Boron diffusion in bcc-Fe studied by first-principles calculations  

Boron diffusion in bcc-Fe studied by first-principles calculations

在线阅读下载全文

作  者:李向龙 吴平 杨锐杰 闫丹 陈森 张师平 陈宁 

机构地区:[1]Department of Physics, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China [2]Department of Inorganic Non-metallic Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China

出  处:《Chinese Physics B》2016年第3期307-313,共7页中国物理B(英文版)

基  金:Project supported by the National Natural Science Foundation of China(Grant No.51276016);the National Basic Research Program of China(Grant No.2012CB720406)

摘  要:The diffusion mechanism of boron in bcc-Fe has been studied by first-principles calculations. The diffusion coefficients of the interstitial mechanism, the B-monovacancy complex mechanism, and the B-divacancy complex mechanism have been calculated. The calculated diffusion coefficient of the interstitial mechanism is DO = 1.05 x l0-7 exp (-0.75 eV/kT) m2. s-1, while the diffusion coefficients of the B-monovacancy and the B-divacancy complex mechanisms are D1 =1.22 x 10-6fl exp (-2.27 eV/kT) mE. s-1 and D2 - 8.36 x 10-6 exp (-4.81 eV/kT) m2. s-l, re- spectively. The results indicate that the dominant diffusion mechanism in bcc-Fe is the interstitial mechanism through an octahedral interstitial site instead of the complex mechanism. The calculated diffusion coefficient is in accordance with the reported experiment results measured in Fe-3%Si-B alloy (bcc structure). Since the non-equilibrium segregation of boron is based on the diffusion of the complexes as suggested by the theory, our calculation reasonably explains why the non-equilibrium segregation of boron is not observed in bcc-Fe in experiments.The diffusion mechanism of boron in bcc-Fe has been studied by first-principles calculations. The diffusion coefficients of the interstitial mechanism, the B-monovacancy complex mechanism, and the B-divacancy complex mechanism have been calculated. The calculated diffusion coefficient of the interstitial mechanism is DO = 1.05 x l0-7 exp (-0.75 eV/kT) m2. s-1, while the diffusion coefficients of the B-monovacancy and the B-divacancy complex mechanisms are D1 =1.22 x 10-6fl exp (-2.27 eV/kT) mE. s-1 and D2 - 8.36 x 10-6 exp (-4.81 eV/kT) m2. s-l, re- spectively. The results indicate that the dominant diffusion mechanism in bcc-Fe is the interstitial mechanism through an octahedral interstitial site instead of the complex mechanism. The calculated diffusion coefficient is in accordance with the reported experiment results measured in Fe-3%Si-B alloy (bcc structure). Since the non-equilibrium segregation of boron is based on the diffusion of the complexes as suggested by the theory, our calculation reasonably explains why the non-equilibrium segregation of boron is not observed in bcc-Fe in experiments.

关 键 词:BORON diffusion coefficient DIVACANCY first-principles calculation 

分 类 号:O469[理学—凝聚态物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象