检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:柴博森[1] 项玥[2] 马文星[1] 遇超 寇尊权[1]
机构地区:[1]吉林大学机械科学与工程学院,长春130022 [2]吉林省产品质量监督检验院,长春130103
出 处:《农业工程学报》2016年第3期34-40,F0003,F0004,共9页Transactions of the Chinese Society of Agricultural Engineering
基 金:国家自然科学基金资助项目(51405184);吉林大学基本科研业务费青年教师创新项目(450060501267)
摘 要:合理选择湍流模型是获取准确和可靠数值模拟结果的关键。该文采用3种湍流模型(标准k-ε模型、分离涡模型、大涡模拟模型)仿真制动工况下方形腔液力偶合器流场,提取流速场和涡量场。基于粒子图像测速(particle image velocimetry,PIV)技术测量液力偶合器制动工况下流场,将数值模拟结果与PIV试验结果进行对比,以PIV试验测量结果作为评价基准,分析采用3种湍流模型计算流场结果的差异性,完成湍流模型的适用性分析。结果表明,标准k-ε模型仿真结果与PIV试验结果误差较大;采用大涡模拟模型模拟主流区域流场结构分布更加真实,仿真结果能够较好地解释主流区域多尺度涡旋运动规律和能量耗散机理;采用分离涡模型能够更准确地捕捉近壁面和角涡区高梯度流场结构分布。研究结果可为液力偶合器流场精确计算与性能预测提供参考。Hydrodynamic coupling is used for power transmission in heavy duty drives, such as power stations, ship propulsion, band conveyers, mills, and larger transport vehicles. Their hydrodynamic principle enables a low-wear torque to convert from a drive to a load. The flow in a hydrodynamic coupling is one of the most complex problems encountered in engineering fluid mechanics. The external performance of hydrodynamic coupling is determined by its internal distribution of flow field. It is very important to make a deep research on the internal distribution of flow field for the performance improvement and structural optimization in the design of hydrodynamic coupling. Numerical simulation is a main way to study the internal flow field of hydrodynamic coupling. The results of numerical simulation that are calculated by different turbulence models are quite different. In order to obtain accurate and reliable results of numerical simulation, it is a key to choose a reasonable turbulence model. The integrated computer engineering and manufacturing (ICEM) software was used to mesh the whole flow channel model of hydrodynamic coupling by hexahedral grids, and the total mesh number was 470 944 and the number of nodes was 521 887. Numerical simulation of three-dimensional unsteady turbulent flows in hydrodynamic coupling was carried out by numerically solving the Navier-Stokes equations in a rotating coordinate system. In order to analyze the applicability of different turbulence models in the calculation of flow field in hydrodynamic coupling, 3 different turbulence models (standard k-e model, detached eddy simulation model, large eddy simulation model) were chosen to simulate the internal flow field of square cavity hydrodynamic coupling under braking condition. The quantity and quality of mesh was consistent during the numerical simulation of different turbulence models. The velocity field and vorticity field of radial section in hydrodynamic coupling were simulated and extracted through ANSYS CFX software. In addi
关 键 词:计算机仿真 可视化 模型 液力偶合器 粒子图像测速 流速场 涡量场 涡旋
分 类 号:TH137.331[机械工程—机械制造及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.219.24.193