换热网络多目标综合优化算法研究进展  被引量:7

Research progress on optimization algorithms in multi-objective synthesis of heat exchanger networks

在线阅读下载全文

作  者:吕俊锋[1] 肖武[1] 王开锋[1] 李中华[1] 贺高红[1] 

机构地区:[1]大连理工大学精细化工国家重点实验室膜科学与技术研究开发中心,辽宁大连116024

出  处:《化工进展》2016年第2期352-357,共6页Chemical Industry and Engineering Progress

基  金:国家自然科学基金(21206014;21125628);中央高校基本科研业务费专项基金(DUT14LAB14);中国石油化工股份有限公司资助项目(X514001)

摘  要:资源和能源的可持续发展使得换热网络综合不仅要考虑经济性,同时要满足柔性、可靠性、可操作性和环境影响度等指标的要求。目前,换热网络多目标综合的研究有了初步进展并引起了广泛关注。本文阐述了进行换热网络多目标综合的必要性并总结了相关研究。重点对常用的多目标优化算法作了总结和对比,综述了其在换热网络多目标优化设计中的应用进展。研究表明,传统多目标算法越来越无法满足复杂模型的求解,而多目标进化算法可以很好地求解换热网络综合多目标优化问题,其中NSGA-Ⅱ算法是目前应用最广的有效算法。提出尝试NSGA-Ⅱ等多目标进化算法,基于超结构建立包括经济性、柔性、可靠性、可操作性和环境影响度等在内的换热网络多目标综合模型,给出Pareto最优解集合供决策者选择是未来的研究方向。For the sustainable development in resources and energy,the designers should not only consider economy,but also flexibility,reliability,operability and environmental impact in the synthesis of heat exchanger networks(HENs). Multi-objective synthesis of HENs has got preliminary progress and drawn great attention. This paper illustrates the necessity of multi-objective synthesis of HENs and summarizes the research progress on multi-objective synthesis of HENs. The summary and comparison of the algorithms for solving multi-objective optimization problems were mainly focused. Application in multi-objective synthesis of HENs was reviewed. Research shows that traditional multi-objective algorithms are less suitable for solving the problems of complex superstructure. However,multi-objective evolutionary algorithms can solve multi-objective problems better in the synthesis of HENs. Non-dominated sorting genetic algorithm(NSGA-Ⅱ) is one of the most popular and effective applied algorithms. It was proposed that based on superstructure,establishing multi-objective models which involve economy,flexibility,reliability,operability and environmental impact and then present the decision makers with Pareto optimum solutions is the future of HEN synthesis.

关 键 词:系统工程 优化设计 换热网络 多目标 算法 NSGA-Ⅱ 

分 类 号:TQ021.8[化学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象