检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]重庆电子工程职业学院物联网学院,重庆401331
出 处:《江苏农业科学》2016年第1期394-396,共3页Jiangsu Agricultural Sciences
摘 要:农业图像增强对于提高图像识别与分析结果的准确性有很大帮助。多尺度Retinex(muti-scale retinex,MSR)算法由于对噪声具有较强的敏感性,容易在增强图像信息的同时放大噪声,为此结合形态学滤波思想对MSR算法进行改进。首先分别采用半径为1、2的棱形结构元素构建了开启-闭合、闭合-开启的形态滤波器,将它们分别对含有噪声的农业图像进行滤波,获得了滤波图像1、滤波图像2;然后根据局部像素最大化原则对滤波图像1、滤波图像2进行融合,得到滤波后图像;最后采用MSS算法对滤波后的图像进行增强。分别采用图像标准差(standard deviation,SD)、归一化均方根误差(normalized mean square error,NMSE)对增强后的图像进行客观性评价。结果表明,该算法对于低对比度且含有噪声的农业图像的增强效果明显优于形态学滤波、MSR算法。
关 键 词:形态学融合滤波 农业图像 MSR算法 局部像素最大化原则
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222