基于加权组合的海杂波多重分形建模方法  被引量:1

Based on a weighted combination of sea clutter multi-fractal model

在线阅读下载全文

作  者:鲍星星[1] 

机构地区:[1]河海大学,江苏南京210000

出  处:《电子设计工程》2016年第4期32-34,共3页Electronic Design Engineering

摘  要:文中研究了一种海杂波多重分形建模方法,其主要是对以往加权组合的海杂波多重分形模型在复杂度方面提出了改进。以往加权组合的海杂波多重分形模型是大量单一的分数布朗运动在概率意义上的线性组合,模型的复杂度主要取决于两个方面:一是模型在建模过程中需要多次判别寻优以得到与建模输入海杂波特性相似的仿真数据,二是为了保证建模输出的仿真数据具有与输入海杂波较为相似的多重分形特性,需要有足够多的单一分形序列参与加权组合。本文的模型依然是采用加权组合的方法进行建模,但运用复合分数布朗运动替代单一分形序列进行加权组合建模,模型主要利用了复合分式布朗运动具有多重分形特性这一优势,大大减少了参与加权组合的分形信号的数量,在达到以往加权组合模型在多重分形特性的仿真效果基础上,降低了模型的复杂度。A sea clutter multi-fractal modeling methods is designed in this paper, which is in order to improve the complexity of a weighted combination of past sea clutter muhi-fractal model. The past sea clutter multi-fractal model is a linear combination of many fractional Brownian motions in the probabilistic sense. The complexity of the pat model depends primarily on two aspects: First, the model requires comparing the multi-fractal characteristics of input sea clutter and simulation sea clutter enough times to obtain the most similar simulation data in the modeling process; the second is to require a sufficient number of single fractal sequences to involve in a weighted combination, which is ensure the simulation output data has the similar multi-fractal characteristics of the input sea clutter, the model that is designed in this paper is still adopt the same method of the pat one, but it replace fractional Brownian motions with complex fractional Brownian motions to involve in weighted combination. The model that is designed in this paper make the best use of the advantage that complex fractional Brownian motions has the multi-fractal characteristics, which greatly reduces the number of participating weighted combination motions.so under the premise of reaching the best simulate sea clutter, the model that is designed in this paper greatly reduces the complexity of the past one.

关 键 词:加权组合 多重分形 复合分式布朗运动 单一分形序列 海杂波 

分 类 号:TN955[电子电信—信号与信息处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象