检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘国才[1] 胡泽田 朱苏雨[2] 袁媛[2] 刘科[2] 吴峥[2] 张九堂[2] 莫逸[2]
机构地区:[1]湖南大学电气与信息工程学院,湖南长沙410082 [2]中南大学湘雅医学院附属湖南省肿瘤医院放疗,科放疗中心,PET/CT中心,湖南长沙410013
出 处:《湖南大学学报(自然科学版)》2016年第2期141-149,共9页Journal of Hunan University:Natural Sciences
基 金:国家自然科学基金资助项目(61271382,61301254,61471166);湖南省肿瘤医院科研平台建设基金项目~~
摘 要:针对肿瘤放疗生物靶区高精度勾画难题,根据头颈部肿瘤PET(positron emission computed tomography)影像特点,提出了肿瘤PET图像分割随机游走方法.首先,根据PET SUV(standardized uptake value)影像,采用三维自适应区域生长和数学形态学膨胀方法确定随机游走方法的种子点,将包含肿瘤的感兴趣区域分为核心肿瘤区域(标记为前景种子点)、正常组织区域(标记为背景种子点)和待定区域.然后,利用头颈部肿瘤和周围正常组织PET图像具有不同的对比度纹理特征,将PET SUV及其对比度纹理值作为随机游走方法中边的权值计算依据.实验结果表明,该法不仅比传统随机游走方法平均提速9.34倍,而且,以临床医生手工勾画的大体肿瘤区作为参考标准,相似度平均提高32.5%(P<0.05).本文方法能够有效地自动勾画头颈部肿瘤放疗生物靶区.In order to solve the problem of the high accuracy delineation of biological target volume (BTV) for the radiotherapy of head and neck cancer, a random walk method was proposed by using PET (positron emission computed tomography) image features of tumors. Firstly, the selected region of interest (ROD was segmented into the primary tumor (labeled as foreground seeds), normal tissue (labeled as background seeds) and pending region by three-dimensional adaptive region growing and morphological dilation based on PET SUV images. Secondly, due to the differences of contrast texture feature of head and neck tumor and surrounding normal tissues in PET images, the contrast texture feature was incorporated into the weights of random walk(RW) to further improve the accuracy of tumor segmentation results. Clinical PET image segmentations of head and neck cancer have shown that the improved RW is 9.34 timesfaster than the traditional RW on average. And the similarity is increased by 32.5 % on average if the gross tumor volume delineated by clinicians is considered as the ground truth (P〈0.05). The proposed method is an efficient and accurate method for the delineation of the BTV corresponding to head and neck tumors.
关 键 词:医学图像分割 随机游走 区域生长 生物靶区 头颈癌
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.137.155.109