多层螺旋CT三维重建技术在肋骨隐匿性骨折诊断中的应用价值  被引量:61

Application value of multi- slice spiral CT in the diagnosis of occult rib fracture

在线阅读下载全文

作  者:李宝然[1] 

机构地区:[1]辽宁中医药大学附属第二医院放射科,辽宁沈阳110034

出  处:《大连医科大学学报》2016年第1期52-55,共4页Journal of Dalian Medical University

摘  要:目的探讨多层螺旋CT三维重建技术在肋骨隐匿性骨折诊断中的应用价值。方法对45例临床怀疑肋骨骨折,而数字X线摄影(DR)检查未见骨折征象的病例,行多层螺旋CT扫描,并以最大密度投影(MIP)、多平面重建(MPR)、曲面重建(CPR)和容积再现(VR)4种图像处理方法重建,分析各方法诊断准确率。结果 45例患者共检出肋骨隐匿性骨折66处,以不完全性骨折为主(87.88%),多位于肋骨角处(59.09%)。4种三维重建技术中以CPR检出率最高(100%),其次为MPR(96.97%)、VR(78.79%),MIP最低(31.82%)。各方法总检出率比较,差异有显著性意义(χ2=110.41,P<0.01),其中CPR总检出率明显高于VR、MIP(P均<0.01)。结论多层螺旋CT三维重建技术能直观、准确、高效地显示肋骨隐匿性骨折,具有较高的诊断价值和应用前景。Objective To explore the application value of multi- slice spiral CT in the diagnosis of occult rib fracture.Methods 45 patients with clinical suspicion of rib fracture,who had negative results of digital radiography( DR),were examined by multi- slice spiral CT. The images of patients were reconstructed using maximum intensity projection( MIP),multi- planar reconstruction( MPR),curved planar reformation( CPR) and volume rendering( VR). The diagnostic accuracies of the four algorithms were analyzed. Results Totally,66 rib occult fractures were detected in 45 patients. The majority of the fractures were incomplete( 87. 88%),and occurred in the rib angle( 59. 09%). The CPR had the highest detection rate( 100%),followed by MPR( 96. 97%),VR( 78. 79%) and MIP( 31. 82%).The total detection rates were significant different( P 〈0. 01) when compared among the groups; the total detection rate of CPR was significantly higher than that of VP and MIP( P 〈0. 01). Conclusion Multi- slice spiral CT combined with post- processing technique could intuitively,accurately and efficiently display occult rib fracture,it has a high diagnostic value and application prospect.

关 键 词:肋骨 隐匿性骨折 多层螺旋CT 三维重建 

分 类 号:R816.8[医药卫生—放射医学] R683.1[医药卫生—临床医学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象