机构地区:[1]College of Materials Science and Engineering, Nanjing Tech University [2]College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University
出 处:《Journal of Rare Earths》2016年第3期268-275,共8页稀土学报(英文版)
基 金:supported by the National Natural Science Foundation of China(51272105);the National Key Technology R&D Program of China(2012BAE01B03);the Research Subject of Environmental Protection Department of Jiangsu Province of China(2013006);the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
摘 要:A series of copper-doped Ti-Ce-O_x complex oxide catalysts were synthesized by sol-gel method and evaluated for selective catalytic reduction of NO by NH_3 at low temperature. The promotional effect of copper doping on their structure, acidity and catalytic activity were investigated by means of Brumauer-Emmett-Teller(BET), temperature-programmed reduction(H_2-TPR), X-ray diffraction(XRD), scanning electron microscopy(SEM), temperature programmed desorption(NH_3-TPD) and pyridine adsorption infrared spectrum(Py-IR) technologies. Results showed that the copper additives could improve the low temperature catalytic performance for selective catalytic reduction of Ti-Ce-O_x catalyst and the NO conversion efficiency of Ti-Cu-Ce-O_x catalyst reached above 90% at 150-250 oC(Ti/Cu=4). The introduction of copper could enhance the redox property of the Ti-Ce-O_x complex oxide catalyst, refine the particle size caused by lattice distortion and oxygen vacancy defect and enhance the acid amount of the Lewis acid site. Moreover, Ti-Cu-Ce-O_x complex oxide catalyst also had good anti-sulfur ability and anti-water influence, when injecting 300 ppm SO_2 and 10 vol.%H_2O, the NO conversion efficiency of Ti-Cu-Ce-O_x catalyst reached 80%.A series of copper-doped Ti-Ce-O_x complex oxide catalysts were synthesized by sol-gel method and evaluated for selective catalytic reduction of NO by NH_3 at low temperature. The promotional effect of copper doping on their structure, acidity and catalytic activity were investigated by means of Brumauer-Emmett-Teller(BET), temperature-programmed reduction(H_2-TPR), X-ray diffraction(XRD), scanning electron microscopy(SEM), temperature programmed desorption(NH_3-TPD) and pyridine adsorption infrared spectrum(Py-IR) technologies. Results showed that the copper additives could improve the low temperature catalytic performance for selective catalytic reduction of Ti-Ce-O_x catalyst and the NO conversion efficiency of Ti-Cu-Ce-O_x catalyst reached above 90% at 150-250 oC(Ti/Cu=4). The introduction of copper could enhance the redox property of the Ti-Ce-O_x complex oxide catalyst, refine the particle size caused by lattice distortion and oxygen vacancy defect and enhance the acid amount of the Lewis acid site. Moreover, Ti-Cu-Ce-O_x complex oxide catalyst also had good anti-sulfur ability and anti-water influence, when injecting 300 ppm SO_2 and 10 vol.%H_2O, the NO conversion efficiency of Ti-Cu-Ce-O_x catalyst reached 80%.
关 键 词:Ti-Cu-Ce-Ox catalyst selective catalytic reduction low temperature Cu doping rare earths
分 类 号:X701[环境科学与工程—环境工程] O643.36[理学—物理化学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...