机构地区:[1]School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China [2]School of Material and Metallurgy, Inner Mongolia University of Science and Technology, Baotou 014010, China [3]Wesleyan College of Guangzhou University, Guangzhou 510006, China
出 处:《Journal of Rare Earths》2016年第3期276-282,共7页稀土学报(英文版)
基 金:supported by National Natural Science Foundation of China(51474133,21407084);Talent Incubation Funding of School of Materials and Metallurgy(2014CY012)
摘 要:The electrocatalytic activity and stability of Pt/C catalyst modified by using CeO_2-ZrO_2 mixed oxides for the alcohols electrochemical oxidation as probes were investigated. The catalyst samples were characterized by X-ray diffraction(XRD) and scanning electron microscopy(SEM). The electrochemical properties were measured by a three electrode system on electrochemical workstation(IVIUM). The results showed that the presence of CeO_2-ZrO_2 might be associated with the presence of Pt, which indicated that possibly there was synergistic effect between CeO_2-ZrO_2 and Pt nanoparticles. The electrocatalytic activity and stability of Pt-MO_x/C(M=Ce, Zr) for methanol and ethanol oxidation was better than that of Pt-CeO_2/C, which was attributed to that CeO_2-ZrO_2 composited oxides enhanced oxygen mobility and promoted oxygen storage capacity(OSC). Furthermore, the best performance was found when the molar ratio of CeO_2 to ZrO_2 was 2:1 for the oxidation of methanol and ethanol. The forward peak current density of Pt-MO_x/C(M=Ce, Zr, Ce:Zr=2:1) towards the methanol electrooxidation was about 3.8 times that of Pt-CeO_2/C. Pt-MO_x/C(M=Ce, Zr) appeared to be a promising and less expensive methanol oxidation anode catalyst.The electrocatalytic activity and stability of Pt/C catalyst modified by using CeO_2-ZrO_2 mixed oxides for the alcohols electrochemical oxidation as probes were investigated. The catalyst samples were characterized by X-ray diffraction(XRD) and scanning electron microscopy(SEM). The electrochemical properties were measured by a three electrode system on electrochemical workstation(IVIUM). The results showed that the presence of CeO_2-ZrO_2 might be associated with the presence of Pt, which indicated that possibly there was synergistic effect between CeO_2-ZrO_2 and Pt nanoparticles. The electrocatalytic activity and stability of Pt-MO_x/C(M=Ce, Zr) for methanol and ethanol oxidation was better than that of Pt-CeO_2/C, which was attributed to that CeO_2-ZrO_2 composited oxides enhanced oxygen mobility and promoted oxygen storage capacity(OSC). Furthermore, the best performance was found when the molar ratio of CeO_2 to ZrO_2 was 2:1 for the oxidation of methanol and ethanol. The forward peak current density of Pt-MO_x/C(M=Ce, Zr, Ce:Zr=2:1) towards the methanol electrooxidation was about 3.8 times that of Pt-CeO_2/C. Pt-MO_x/C(M=Ce, Zr) appeared to be a promising and less expensive methanol oxidation anode catalyst.
关 键 词:CEO2-ZRO2 composite oxide CATALYST preparation characterization performance rare earths
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...