检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]天津大学电子信息工程学院
出 处:《计算机工程与应用》2016年第5期79-83,共5页Computer Engineering and Applications
基 金:国家自然科学基金(No.61372145)
摘 要:信号重构是压缩感知过程中的重要环节,迭代硬阈值(IHT)算法因具有较好的重构性能被广泛应用,但其收敛速度比较慢。近期提出的半迭代硬阈值算法(SIHT)虽然可实现快速收敛,但对测量矩阵的尺度缩放非常敏感,依赖性强,大大限制了其应用范围。受OMP对MP算法改进启发,对SIHT算法进行改进,提出了正交半迭代硬阈值(OSIHT)重构算法。该算法不仅取消了对测量矩阵的依赖性,还有效改善了图像重构质量,减少运行时间。Signal reconstruction plays an important role in the compressed sensing process. Iterative Hard Threshold(IHT)algorithm has found a wide application in signal reconstruction due to its good performance, but it also shows very low convergence rate. The Semi-Iterative Hard Thresholding(SIHT)algorithm recently proposed can achieve fast convergence, but it is sensitive to the scaling of the measurement matrix and has a strong dependence on measurement matrix,which greatly limits its application. Inspired by the idea that OMP improves MP algorithm, and in order to improve the SIHT algorithm, the Orthogonal Semi-Iterative Hard Threshold(OSIHT)algorithm is put forward. The proposed algorithm not only removes the restriction on the orthogonal measurement matrix, but significantly improves the quality of reconstructed image, while greatly shortening the operation time.
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3