用于脑运作分析的前向网络样本重组树生成算法研究  被引量:1

在线阅读下载全文

作  者:谢勤[1,2,3,4] 

机构地区:[1]广州市科技和信息化局,广东省广州市510000 [2]第16届亚运会组委会信息技术部,广东省广州市510000 [3]广州生产力促进中心,广东省广州市510000 [4]广州市科学技术信息研究所,广东省广州市510000

出  处:《电子技术与软件工程》2016年第4期258-264,共7页ELECTRONIC TECHNOLOGY & SOFTWARE ENGINEERING

摘  要:文献[1-9]提出了血液循环在大脑处理信息的过程中具有时序控制作用,并用量化模型结合结构风险最小化相关理论说明时序控制作用的意义。文献[10-24]汇总介绍量化模型中的一些细节。为方便同行阅读,我们在2013年也发表了系列综合报告[1-29]。文献[31-32]介绍我们开发的一个算法,这一算法实现将一个有向网络分解为一系列前向网络集合。分解出来的前向网络集合可用于分析各种情况对任一细胞活动情况的影响,也可用于搭建精细的神经网络模型,进而用于辅助医学等方面的研究。算法的网络分解能力能符合文献[1-28]所介绍的大脑处理信息量化方案的要求。算法的设计用到了笔者在2004年论文[30]中总结的一种算法设计思路,采用这一思路设计的算法有好的可扩展性,本文介绍了怎样将文献[31-32]介绍DG-FFN Trees算法升级扩展为DG-FFN SR Trees算法,升级成的DG-FFN SR Trees算法可用于实现样本排列图的生成。

关 键 词:过程存储和重组模型 时序控制 脑电波 微循环 结构风险 中枢神经系统 信息处理 微环路 时间认知 智力起源 大脑量化模型 前向网络树 前向网络样本重组树 

分 类 号:R338[医药卫生—人体生理学] TP183[医药卫生—基础医学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象