Active fault-tolerant control strategy of large civil aircraft under elevator failures  被引量:5

Active fault-tolerant control strategy of large civil aircraft under elevator failures

在线阅读下载全文

作  者:Wang Xingjian Wang Shaoping Yang Zhongwei Zhang Chao 

机构地区:[1]School of Automation Science and Electrical Engineering, Beihang University

出  处:《Chinese Journal of Aeronautics》2015年第6期1658-1666,共9页中国航空学报(英文版)

基  金:supported by the National Natural Science Foundation of China(No.51305011);the National Basic Research Program of China(No.2014CB046402);the111 Project of China

摘  要:Aircraft longitudinal control is the would lead to catastrophic accident of aircraft. most important actuation system and its failures This paper proposes an active fault-tolerant control (AFTC) strategy for civil aircraft with different numbers of faulty elevators. In order to improve the fault-tolerant flight control system performance and effective utilization of the control surface, trim- mable horizontal stabilizer (THS) is considered to generate the extra pitch moment. A suitable switching mechanism with performance improvement coefficient is proposed to determine when it is worthwhile to utilize THS. Furthermore, AFTC strategy is detailed by using model following technique and the proposed THS switching mechanism. The basic fault-tolerant controller is designed to guarantee longitudinal control system stability and acceptable performance degradation under partial elevators failure. The proposed AFTC is applied to Boeing 747-200 numerical model and simulation results validate the effectiveness of the proposed AFTC approach.Aircraft longitudinal control is the would lead to catastrophic accident of aircraft. most important actuation system and its failures This paper proposes an active fault-tolerant control (AFTC) strategy for civil aircraft with different numbers of faulty elevators. In order to improve the fault-tolerant flight control system performance and effective utilization of the control surface, trim- mable horizontal stabilizer (THS) is considered to generate the extra pitch moment. A suitable switching mechanism with performance improvement coefficient is proposed to determine when it is worthwhile to utilize THS. Furthermore, AFTC strategy is detailed by using model following technique and the proposed THS switching mechanism. The basic fault-tolerant controller is designed to guarantee longitudinal control system stability and acceptable performance degradation under partial elevators failure. The proposed AFTC is applied to Boeing 747-200 numerical model and simulation results validate the effectiveness of the proposed AFTC approach.

关 键 词:Active fault-tolerant control Longitudinal control Model following Performance improvementcoefficient Trimmable horizontalstabilizer 

分 类 号:V267[航空宇航科学与技术—航空宇航制造工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象