Wide Operational Range Processor Power Delivery Design for Both Super-Threshold Voltage and Near-Threshold Voltage Computing  

Wide Operational Range Processor Power Delivery Design for Both Super-Threshold Voltage and Near-Threshold Voltage Computing

在线阅读下载全文

作  者:Xin He Gui-Hai Yan Yin-He Han Xiao-Wei Li 

机构地区:[1]State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences Beijing 100190, China [2]University of Chinese Academy of Sciences, Beijing 100049, China

出  处:《Journal of Computer Science & Technology》2016年第2期253-266,共14页计算机科学技术学报(英文版)

基  金:This work is supported by the National Natural Science Foundation of China under Grant Nos. 61572470, 61532017, 61522406, 61432017, 61376043, and 61221062.

摘  要:The load power range of modern processors is greatly enlarged because many advanced power management techniques are employed, such as dynamic voltage frequency scaling, Turbo Boosting, and near-threshold voltage (NTV) technologies. However, because the efficiency of power delivery varies greatly with different load conditions, conventional power delivery designs cannot maintain high efficiency over the entire voltage spectrum, and the gained power saving may be offset by power loss in power delivery. We propose SuperRange, a wide operational range power delivery unit. SuperRange complements the power delivery capability of on-chip voltage regulator and off-chip voltage regulator. On top of SuperRange, we analyze its power conversion characteristics and propose a voltage regulator (VR) aware power management algorithm. Moreover, as more and more cores have been integrated on a singe chip, multiple SuperRange units can serve as basic building blocks to build, in a highly scalable way, more powerful power delivery subsystem with larger power capacity. Experimental results show SuperRange unit offers lx and 1.3x higher power conversion efficiency (PCE) than other two conventional power delivery schemes at NTV region and exhibits an average 70% PCE over entire operational range. It also exhibits superior resilience to power-constrained systems.The load power range of modern processors is greatly enlarged because many advanced power management techniques are employed, such as dynamic voltage frequency scaling, Turbo Boosting, and near-threshold voltage (NTV) technologies. However, because the efficiency of power delivery varies greatly with different load conditions, conventional power delivery designs cannot maintain high efficiency over the entire voltage spectrum, and the gained power saving may be offset by power loss in power delivery. We propose SuperRange, a wide operational range power delivery unit. SuperRange complements the power delivery capability of on-chip voltage regulator and off-chip voltage regulator. On top of SuperRange, we analyze its power conversion characteristics and propose a voltage regulator (VR) aware power management algorithm. Moreover, as more and more cores have been integrated on a singe chip, multiple SuperRange units can serve as basic building blocks to build, in a highly scalable way, more powerful power delivery subsystem with larger power capacity. Experimental results show SuperRange unit offers lx and 1.3x higher power conversion efficiency (PCE) than other two conventional power delivery schemes at NTV region and exhibits an average 70% PCE over entire operational range. It also exhibits superior resilience to power-constrained systems.

关 键 词:voltage regulator power delivery near-threshold computing multicore processor 

分 类 号:TN86[电子电信—信息与通信工程] TM935[电气工程—电力电子与电力传动]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象