检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中南大学信息科学与工程学院,湖南长沙410083
出 处:《化工学报》2016年第3期897-902,共6页CIESC Journal
基 金:国家自然科学基金项目(61304126;61473318;61134006;61304019)~~
摘 要:铝土矿泡沫浮选过程中,因矿浆的快速沉淀等原因工艺参数在线检测困难,且入矿性质变化频繁,造成浮选过程参数随入矿的变化而不断改变。而通常建立的静态软测量模型利用固定样本集训练得到,当矿源变化时容易发生模型失配现象,使模型不能跟踪当前对象。针对变矿源下的模型失配问题,本文提出基于隐层节点动态分配和模型参数动态修正策略的RBF神经网络建模方法,用于铝土矿浮选过程酸碱度的在线检测建模。实际生产数据仿真结果表明该方法能够有效解决模型失配的问题。It is difficult to measure the process parameters online in the bauxite froth flotation process because the slurry deposits quickly. Especially, frequent change of the characteristics of the ore makes the process parameters change from time to time. So that, the static soft sensing models, such as the neural network model, which was obtained by a fixed set of training samples, may not track the dynamic characteristics of the process caused by change of the ore resource. And, thus, model mismatch problem occurs. In this paper, for model mismatch problem under various ore sources, dynamic RBF neural network modeling method based on the hidden layer node dynamic allocation and model parameters dynamic correction strategy is proposed. And the model is used for online measurement of the pH of the slurry in the flotation process, simulation results show that the dynamic model can solve the model mismatch problem well.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222