Coexistence of multiple coronaviruses in several bat colonies in an abandoned mineshaft  被引量:5

Coexistence of multiple coronaviruses in several bat colonies in an abandoned mineshaft

在线阅读下载全文

作  者:Xing-Yi Ge Ning Wang Wei Zhang Ben Hu Bei Li Yun-Zhi Zhang Ji-Hua Zhou Chu-Ming Luo Xing-Lou Yang Li-Jun Wu Bo Wang Yun Zhang Zong-Xiao Li Zheng-Li Shi 

机构地区:[1]Key Laboratory of Special Pathogens,Wuhan Institute of Virology,Chinese Academy of Sciences,Wuhan 430071,China [2]Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention,Yunnan Institute of Endemic Diseases Control and Prevention,Dali 671000,China [3]School of Public Health,Dali University,Dali 671000,China [4]Mojiang Center for Diseases Control and Preventionl Mojiang 654800,China

出  处:《Virologica Sinica》2016年第1期31-40,共10页中国病毒学(英文版)

基  金:funded by the National Natural Science Foundation of China(81290341);Scientific and Technological Basis Special Project(2013FY113500);China Mega-Project for Infectious Disease(2014ZX 10004001-003)from the Minister of Science and Technology of the People’s Republic of China;USNIAID(R01AI110964)

摘  要:Since the 2002–2003 severe acute respiratory syndrome(SARS) outbreak prompted a search for the natural reservoir of the SARS coronavirus, numerous alpha- and betacoronaviruses have been discovered in bats around the world. Bats are likely the natural reservoir of alpha- and betacoronaviruses, and due to the rich diversity and global distribution of bats, the number of bat coronaviruses will likely increase. We conducted a surveillance of coronaviruses in bats in an abandoned mineshaft in Mojiang County, Yunnan Province, China, from 2012–2013. Six bat species were frequently detected in the cave: Rhinolophus sinicus, Rhinolophus affinis, Hipposideros pomona, Miniopterus schreibersii, Miniopterus fuliginosus, and Miniopterus fuscus. By sequencing PCR products of the coronavirus RNA-dependent RNA polymerase gene(Rd Rp), we found a high frequency of infection by a diverse group of coronaviruses in different bat species in the mineshaft. Sequenced partial Rd Rp fragments had 80%–99% nucleic acid sequence identity with well-characterized Alphacoronavirus species, including Bt CoV HKU2, Bt CoV HKU8, and Bt CoV1,and unassigned species Bt CoV HKU7 and Bt CoV HKU10. Additionally, the surveillance identified two unclassified betacoronaviruses, one new strain of SARS-like coronavirus, and one potentially new betacoronavirus species. Furthermore, coronavirus co-infection was detected in all six bat species, a phenomenon that fosters recombination and promotes the emergence of novel virus strains. Our findings highlight the importance of bats as natural reservoirs of coronaviruses and the potentially zoonotic source of viral pathogens.Since the 2002–2003 severe acute respiratory syndrome(SARS) outbreak prompted a search for the natural reservoir of the SARS coronavirus, numerous alpha- and betacoronaviruses have been discovered in bats around the world. Bats are likely the natural reservoir of alpha- and betacoronaviruses, and due to the rich diversity and global distribution of bats, the number of bat coronaviruses will likely increase. We conducted a surveillance of coronaviruses in bats in an abandoned mineshaft in Mojiang County, Yunnan Province, China, from 2012–2013. Six bat species were frequently detected in the cave: Rhinolophus sinicus, Rhinolophus affinis, Hipposideros pomona, Miniopterus schreibersii, Miniopterus fuliginosus, and Miniopterus fuscus. By sequencing PCR products of the coronavirus RNA-dependent RNA polymerase gene(Rd Rp), we found a high frequency of infection by a diverse group of coronaviruses in different bat species in the mineshaft. Sequenced partial Rd Rp fragments had 80%–99% nucleic acid sequence identity with well-characterized Alphacoronavirus species, including Bt CoV HKU2, Bt CoV HKU8, and Bt CoV1,and unassigned species Bt CoV HKU7 and Bt CoV HKU10. Additionally, the surveillance identified two unclassified betacoronaviruses, one new strain of SARS-like coronavirus, and one potentially new betacoronavirus species. Furthermore, coronavirus co-infection was detected in all six bat species, a phenomenon that fosters recombination and promotes the emergence of novel virus strains. Our findings highlight the importance of bats as natural reservoirs of coronaviruses and the potentially zoonotic source of viral pathogens.

关 键 词:coronavirus bat coinfection mineshaft 

分 类 号:Q939.4[生物学—微生物学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象