机构地区:[1]School of Physics, Xinjiang University [2]Xinjiang Astronomical Observatory, Chinese Academy of Sciences [3]School of Physics, Peking University [4]Kavli Institute for Astronomy and Astrophysics, Peking University
出 处:《Research in Astronomy and Astrophysics》2016年第3期91-98,共8页天文和天体物理学研究(英文版)
基 金:supported by the National Natural Science Foundation of China (11203018);the West Light Foundation (XBBS-2014-23);the Science Project of Universities in Xinjiang (XJEDU2012S02);the Doctoral Science Foundation of Xinjiang University (BS120107)
摘 要:Pulsar glitches, i.e. the sudden spin-ups of pulsars, have been detected for most known pulsars.The mechanism giving rise to this kind of phenomenon is uncertain, although a large data set has been built.In the framework of the starquake model, based on Baym & Pines, the glitch sizes(the relative increases of spin-frequencies during glitches) △Ω/Ω depend on the released energies during glitches, with less released energies corresponding to smaller glitch sizes. On the other hand, as one of the dark matter candidates,our Galaxy might be filled with so called strange nuggets(SNs) which are relics from the early Universe.In this case collisions between pulsars and SNs are inevitable, and these collisions would lead to glitches when enough elastic energy has been accumulated during the spin-down process. The SN-triggered glitches could release less energy, because the accumulated elastic energy would be less than that in the scenario of glitches without SNs. Therefore, if a pulsar is hit frequently by SNs, it would tend to have more small glitches, whose values of ??/? are smaller than those in the standard starquake model(with larger amounts of released energy). Based on the assumption that in our Galaxy the distribution of SNs is similar to that of dark matter, as well as on the glitch data in the ATNF Pulsar Catalogue and Jodrell Bank glitch table, we find that in our Galaxy the incidences of small glitches exhibit tendencies consistent with the collision rates between pulsars and SNs. Further testing of this scenario is expected by detecting more small glitches(e.g.,by the Square Kilometre Array).Pulsar glitches, i.e. the sudden spin-ups of pulsars, have been detected for most known pulsars.The mechanism giving rise to this kind of phenomenon is uncertain, although a large data set has been built.In the framework of the starquake model, based on Baym & Pines, the glitch sizes(the relative increases of spin-frequencies during glitches) △Ω/Ω depend on the released energies during glitches, with less released energies corresponding to smaller glitch sizes. On the other hand, as one of the dark matter candidates,our Galaxy might be filled with so called strange nuggets(SNs) which are relics from the early Universe.In this case collisions between pulsars and SNs are inevitable, and these collisions would lead to glitches when enough elastic energy has been accumulated during the spin-down process. The SN-triggered glitches could release less energy, because the accumulated elastic energy would be less than that in the scenario of glitches without SNs. Therefore, if a pulsar is hit frequently by SNs, it would tend to have more small glitches, whose values of ??/? are smaller than those in the standard starquake model(with larger amounts of released energy). Based on the assumption that in our Galaxy the distribution of SNs is similar to that of dark matter, as well as on the glitch data in the ATNF Pulsar Catalogue and Jodrell Bank glitch table, we find that in our Galaxy the incidences of small glitches exhibit tendencies consistent with the collision rates between pulsars and SNs. Further testing of this scenario is expected by detecting more small glitches(e.g.,by the Square Kilometre Array).
关 键 词:pulsars -- glitches -- quark-cluster stars -- strange nuggets
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...