机构地区:[1]Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000, Maribor, Slovenia [2]EKOLID, Ekologko svetovanje, Raziskave in razvoj, Ru~ka cesta 55, SI-2000, Maribor, Slovenia
出 处:《Frontiers of Chemical Science and Engineering》2016年第1期120-130,共11页化学科学与工程前沿(英文版)
摘 要:This paper presents a novel synthesis method for designing integrated processes for oil-in-water (O/W) emulsions treatment. General superstructure involving alternative separation technologies is developed and modelled as a mixed integer linear programming (MILP) model for maximum annual profit. Separation processes in the superstructure are divided into three main sections of which the pretreatment and final treatment are limited to the selection of one altemative (or bypass) only, while within the intermediate section various combinations of different technologies in series can be selected. Integrated processes composed of selected separation techniques for given ranges of input chemical oxygen demand (COD) can be proposed by applying parametric analyses within the superstructure approach. This approach has been applied to an existing industrial case study for deriving optimal combinations of technologies for treating diverse oil-in- water emulsions within the range of input COD values between 1000 mg-L-1 and 145000 mgL t. The optimal solution represents a flexible and profitable process for reducing the COD values below maximal allowable limits for discharging effluent into surface water.This paper presents a novel synthesis method for designing integrated processes for oil-in-water (O/W) emulsions treatment. General superstructure involving alternative separation technologies is developed and modelled as a mixed integer linear programming (MILP) model for maximum annual profit. Separation processes in the superstructure are divided into three main sections of which the pretreatment and final treatment are limited to the selection of one altemative (or bypass) only, while within the intermediate section various combinations of different technologies in series can be selected. Integrated processes composed of selected separation techniques for given ranges of input chemical oxygen demand (COD) can be proposed by applying parametric analyses within the superstructure approach. This approach has been applied to an existing industrial case study for deriving optimal combinations of technologies for treating diverse oil-in- water emulsions within the range of input COD values between 1000 mg-L-1 and 145000 mgL t. The optimal solution represents a flexible and profitable process for reducing the COD values below maximal allowable limits for discharging effluent into surface water.
关 键 词:oil-in-water emulsion chemical oxygen demand SUPERSTRUCTURE process synthesis MILP
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...