A scalable sulfuration of WS2 to improve cyclability and capability of lithium-ion batteries  被引量:7

A scalable sulfuration of WS2 to improve cyclability and capability of lithium-ion batteries

在线阅读下载全文

作  者:Liyan Zhou Shancheng Yan Lijia Pan Xinran Wang Yuqiao Wang Yi Shi 

机构地区:[1]Collaborative Innovation Center of Advanced Microstructures, Nan]ing University, Nanjing 210093, China [2]School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China [3]National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China [4]Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China

出  处:《Nano Research》2016年第3期857-865,共9页纳米研究(英文版)

基  金:This work was financially supported by the National Basic Research Program of China (No. 2013CB932903), the National Natural Science Foundation of China (Nos. 61205057 and 61203289), China Postdoctoral Science special Foundation (No. 2012T50488), Qing Lan Pro- ject, by the "1311 Talent Plan" Foundation of Nanjing University of Posts and Telecommunications.

摘  要:Two-dimensional transition-metal dichalcogenides (WS2 and SnS2) have recently joined the family of energy storage materials (for lithium-ion batteries and supercapacitors) as a result of their favorable ion intercalation. So far, challenges in the synthesis of phase-pure WS2, restacking between WS2 nanosheets, low electronic conductivity, and the brittle nature of WS2, severely limit its use Li-ion battery application. Herein, we develop a facile low temperature solution sulfuration process to improve battery performance dramatically. The sulfuration process is demonstrated to be effective in converting WO3 impurities to WS2, and in repairing the sulfur vacancies, to improve cyclability and rate capability. Lithium-ion battery measurements demonstrate that the stable capacity of the WS2 anode could be enhanced by 48.4% via sulfuration reprocessing, i.e., from 381.7 to 566.8 rnAh/g at a relatively high current density of 0.8 A/g after 50 cycles. We further show that the sulfuration process can be readily extended to other dichalcogenides, and may provide a class of versatile electrode materials for lithium-ion batteries with improved electrochemical characteristics.Two-dimensional transition-metal dichalcogenides (WS2 and SnS2) have recently joined the family of energy storage materials (for lithium-ion batteries and supercapacitors) as a result of their favorable ion intercalation. So far, challenges in the synthesis of phase-pure WS2, restacking between WS2 nanosheets, low electronic conductivity, and the brittle nature of WS2, severely limit its use Li-ion battery application. Herein, we develop a facile low temperature solution sulfuration process to improve battery performance dramatically. The sulfuration process is demonstrated to be effective in converting WO3 impurities to WS2, and in repairing the sulfur vacancies, to improve cyclability and rate capability. Lithium-ion battery measurements demonstrate that the stable capacity of the WS2 anode could be enhanced by 48.4% via sulfuration reprocessing, i.e., from 381.7 to 566.8 rnAh/g at a relatively high current density of 0.8 A/g after 50 cycles. We further show that the sulfuration process can be readily extended to other dichalcogenides, and may provide a class of versatile electrode materials for lithium-ion batteries with improved electrochemical characteristics.

关 键 词:lithium-ion batteries tungsten disulfide sulfuration process ANODE 

分 类 号:TM912[电气工程—电力电子与电力传动] TB383[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象