检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]江苏科技大学船舶与建筑工程学院,江苏张家港215600 [2]清华大学土木工程系土木工程安全与耐久教育部重点实验室,北京100084
出 处:《振动与冲击》2016年第6期85-90,共6页Journal of Vibration and Shock
基 金:国家自然科学基金项目(51078198);清华大学自主科研计划(2011THZ03);江苏省双创博士
摘 要:介绍精确动力刚度法分析中厚椭球壳自由振动具体实施方法,据环向波数不同将中厚椭球壳自由振动分解为一系列确定环向波数的一维振动;利用控制方程Hamilton形式建立动力刚度关系,用常微分方程求解器COLSYS求解控制方程获得单元动力刚度,用Wittrick-Williams算法求得该环向波数下椭球壳自振频率。数值算例给出中厚圆球壳及椭球壳不同边界条件的自振频率,验证动力刚度法高效、可靠、精确。The application of exact dynamic stiffness method to the free vibration analysis of moderately thick elliptical shells was introduced. The free vibration of moderately thick elliptical shells was decomposed into a series of one- dimensional vibration problems corresponding to structural vibration modes with different circumferential wave numbers. For each one-dimensional vibration problem, the governing equation was written in Hamilton form, from which the dynamic stiffness expression of the one-dimensional problem was derived. The governing equations were solved by using the ordinary differential equations solver COLSYS and the dynamic stiffnesses of elements were obtained. By applying the Wittrick-Williams algorithm, the natural frequencies under the vibration mode with a specific circumferential wave number were found. Numerical examples of moderately thick spherical and elliptical shells with different boundary conditions were given, showing that the dynamic stiffness method is robust, reliable and accurate.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145