检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]国防科技大学航天科学与工程学院,湖南长沙410073 [2]北京特种机电技术研究所,北京100012
出 处:《国防科技大学学报》2016年第1期156-162,共7页Journal of National University of Defense Technology
基 金:国家自然科学基金资助项目(11272348)
摘 要:应用Williams本征函数展开和线性变换求解V型切口端部渐进位移场。将该位移场加入常规等参单元位移模式中,构造双材料V型切口加料单元和过渡单元的位移模式,推导加料有限元方程。建立带V型缺口双材料三点弯曲梁试件和直角界面端平面问题的加料有限元模型,求解有限元方程可直接得到应力强度因子。计算结果与用其他方法得到的数据吻合,验证了方法的正确性,可用于双材料V型切口结构断裂特性计算分析。The V-notch asymptotic displacement field was derived through an approach based on the Williams' series expansion and linear algebraic transforms. By incorporating the displacement expressions to the common isoparametric elements,the enriched and transition element displacement model were obtained,and then the enriched finite element equation was derived consequently. The enriched finite element model for a V-notched bi-material three-point bending beam and an orthogonal bonded materials interface end plane problem were constructed. The stress intensity factors can be solved directly from the finite element equation. Comparisons between the results and the published data computed with other algorithm indicate that the present method is correct and can be used to analyze the fracture property of the V-notched bi-material structure.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145