Hydration effects on crystal structures and equations of state for silicate minerals in the subducting slabs and mantle transition zone  被引量:2

Hydration effects on crystal structures and equations of state for silicate minerals in the subducting slabs and mantle transition zone

在线阅读下载全文

作  者:YE Yu 

机构地区:[1]State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences

出  处:《Science China Earth Sciences》2016年第4期707-719,共13页中国科学(地球科学英文版)

基  金:supported by the National Natural Science Foundation of China(Grant Nos.41590621&41473058);the Fundamental Research Funds for the Central University(Grant No.G1323531512);MOST Special Fund from the State Key Laboratory of Geological Processes and Mineral Resources(Grant No.MSFGPMR07),China University of Geosciences at Wuhan

摘  要:There are potentially huge amounts of water stored in Earth's mantle, and the water solubilities in the silicate minerals range from tens to thousands of part per minion(ppm, part per million). Exploring water in the mantle has attracted much attention from the societies of mineralogy and geophysics in recent years. In the subducting slab, serpentine breaks down at high temperature, generating a series of dense hydrous magnesium silicate(DHMS) phases, such as phase A, chondrodite, clinohumite, etc. These phases may serve as carriers of water as hydroxyl into the upper mantle and the mantle transition zone(MTZ). On the other hand, wadsleyite and ringwoodite, polymorphs of olivine, are most the abundant minerals in the MTZ, and able to absorb significant amount of water(up to about 3 wt.% H_2O). Hence, the MTZ becomes a very important layer for water storage in the mantle, and hydration plays important roles in physics and chemistry of the MTZ. In this paper, we will discuss two aspects of hydrous silicate minerals:(1) crystal structures and(2) equations of state(Eo Ss).There are potentially huge amounts of water stored in Earth's mantle, and the water solubilities in the silicate minerals range from tens to thousands of part per minion(ppm, part per million). Exploring water in the mantle has attracted much attention from the societies of mineralogy and geophysics in recent years. In the subducting slab, serpentine breaks down at high temperature, generating a series of dense hydrous magnesium silicate(DHMS) phases, such as phase A, chondrodite, clinohumite, etc. These phases may serve as carriers of water as hydroxyl into the upper mantle and the mantle transition zone(MTZ). On the other hand, wadsleyite and ringwoodite, polymorphs of olivine, are most the abundant minerals in the MTZ, and able to absorb significant amount of water(up to about 3 wt.% H_2O). Hence, the MTZ becomes a very important layer for water storage in the mantle, and hydration plays important roles in physics and chemistry of the MTZ. In this paper, we will discuss two aspects of hydrous silicate minerals:(1) crystal structures and(2) equations of state(Eo Ss).

关 键 词:Hydrous silicate mineral Crystal structure Equation of state(Eo S) Mantle transition zone(MTZ) WADSLEYITE RINGWOODITE 

分 类 号:P542.5[天文地球—构造地质学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象