Experimental study of the azimuthal performance of 3D acoustic transmitter stations  

Experimental study of the azimuthal performance of 3D acoustic transmitter stations

在线阅读下载全文

作  者:Xiao-Hua Che Wen-Xiao Qiao Xiao-Dong Ju Jun-Qiang Lu Jin-Ping Wu Ming Cai 

机构地区:[1]State Key Laboratory of Petroleum Resources and Prospecting,China University of Petroleum [2]Key Laboratory of Earth Prospecting and Information Technology,China University of Petroleum

出  处:《Petroleum Science》2016年第1期52-63,共12页石油科学(英文版)

基  金:supported by the National Natural Science Foundation of China (Grant Nos.11204380,11374371,61102102,11134011);National Science and Technology Major Project (Grant No.2011ZX05020-009);China National Petroleum Corporation (Grant Nos.2014B-4011,2014D-4105,2014A3912);Petro China Innovation Foundation (2014D-5006-0307);China Scholarship Council (No.201306445018)

摘  要:Better well logging techniques for geologic investigations are urgently needed to identify and evaluate complex reservoirs.We describe a new type of 3D transmitter station with corresponding circuits and bodies.They can be used in a promising new technique of acoustic reflection well logging,that features better azimuthal detection capabilities,as well as better investigation depth.The transmitter stations consist of three-level subarrays that can radiate acoustic energy in any required azimuth of 3D space by circularly exciting various combinations at different levels.We tested the 3D acoustic transmitter stations and obtained laboratory directivity measurements with the3 D acoustic transmitter stations for the first time.The results show that the 3-d B beam width in the horizontal plane ranges from 59° to 67° as a result of phase-delayed excitation.The main beam is steered in the vertical plane at a deflection angle that ranges from 0° to 16° when the delay time of the excitation pulse between each pair of adjacent arc arrays is gradually adjusted.The 3-d B beam width is equal to 11°,whereas the deflection angle in the vertical plane is equal to 14°.Each of the four third-level subarrays in the same circumferential direction display consistent horizontal and vertical directivities,thus satisfying the requirements of azimuthal acoustic reflection logging.Better well logging techniques for geologic investigations are urgently needed to identify and evaluate complex reservoirs.We describe a new type of 3D transmitter station with corresponding circuits and bodies.They can be used in a promising new technique of acoustic reflection well logging,that features better azimuthal detection capabilities,as well as better investigation depth.The transmitter stations consist of three-level subarrays that can radiate acoustic energy in any required azimuth of 3D space by circularly exciting various combinations at different levels.We tested the 3D acoustic transmitter stations and obtained laboratory directivity measurements with the3 D acoustic transmitter stations for the first time.The results show that the 3-d B beam width in the horizontal plane ranges from 59° to 67° as a result of phase-delayed excitation.The main beam is steered in the vertical plane at a deflection angle that ranges from 0° to 16° when the delay time of the excitation pulse between each pair of adjacent arc arrays is gradually adjusted.The 3-d B beam width is equal to 11°,whereas the deflection angle in the vertical plane is equal to 14°.Each of the four third-level subarrays in the same circumferential direction display consistent horizontal and vertical directivities,thus satisfying the requirements of azimuthal acoustic reflection logging.

关 键 词:transmitter deflection logging urgently geologic satisfying azimuth exciting excitation formations 

分 类 号:P631.81[天文地球—地质矿产勘探]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象