检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]天津工业大学电气与自动化学院,天津300387 [2]天津工业大学电工电能新技术天津市重点实验室,天津300387 [3]中国石油大港油田原油运销公司,天津300280
出 处:《环境科学导刊》2016年第3期80-84,共5页Environmental Science Survey
基 金:国家自然科学基金项目(No.61203302);天津市应用基础与前沿技术研究计划项目(14JCYBJC18900)
摘 要:分析了卡尔曼滤波预测空气质量指数的机理,用ARMA算法为卡尔曼滤波建立模型,提出了将RBF神经网络融合于卡尔曼滤波的方法,实现对空气质量指数的混合预测。根据空气质量指数时间序列的特点,建立了自回归预测模型,进而建立卡尔曼滤波的状态方程和测量方程。采用随机梯度逼近训练算法训练RBF神经网络,用RBF神经网络的输出作为卡尔曼滤波测量方程的观测值。融合了RBF神经网络后的卡尔曼滤波预测方法减少了单一方法的延迟现象,使同种性质的误差累积减小,提高了预测精度。对AQI序列预测的仿真显示融合后的卡尔曼滤波方法优于单一的卡尔曼滤波方法,亦优于现已广泛应用的BP神经网络预测方法。The prediction mechanism of Kalman filtering for air quality index was analyzed. And a hysteretic neuralnetwork was proposed to predict the air quality index series. State equation for Kalman filter was established by AR-MA model. The hybrid prediction of air quality index, combining Kalman filter and RBF neural network was pro-posed. According to the characteristic of air quality index series, autoregressive model was established. And then,the measurement equation and the state equation of Kalman filter were established as well. Stochastic gradient ap-proximation method was applied to train RBF neural network. The output of RBF neural network was regarded theobserved value by Kalman filter. Hybrid prediction' s main advantages included preventing forecast delay causedby the single prediction mechanism and precise forecasting. The results of predicting air quality index simulationshowed that the hysteretic Kalman filter had better prediction performance than original Kalman filter, and the hys-teretic Kalman filter was also superior to BP neural network.
关 键 词:卡尔曼滤波 空气质量指数 预测 ARMA RBF神经网络
分 类 号:X823[环境科学与工程—环境工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.148.241.79