Effect of CO_2 and N_2 on microbial community changes during column bioleaching of low-grade high pyrite-bearing chalcocite ore  被引量:4

Effect of CO_2 and N_2 on microbial community changes during column bioleaching of low-grade high pyrite-bearing chalcocite ore

在线阅读下载全文

作  者:陈勃伟 武彪 刘兴宇 温建康 

机构地区:[1]National Engineering Laboratory of Biohydrometallurgy,General Research Institute for Nonferrous Metals

出  处:《Journal of Central South University》2015年第12期4528-4535,共8页中南大学学报(英文版)

基  金:Project(51404033)supported by the National Natural Science Foundation of China;Project(2010CB630905)supported by the National Basic Research Program of China

摘  要:Simulated heap bioleaching of low-grade high pyrite-bearing chalcocite ore was conducted at 40 °C with aeration of CO_2 and N_2.Ore samples were collected at day 43,64,85,106 and subjected to microbial community analysis by 16S rRNA gene clone library.Phylogenetic analyses of 16S rDNA fragments revealed that the retrieved sequences are mainly related to genus Acidithiobacillus,Leptospirillum and Sulfobacillus.Aeration of CO_2 and N_2 significantly impacted the microbial community composition.When CO_2 was aerated,the proportion of genus Acidithiobacillus considerably increased,whereas the proportion of genus Leptospirillum and genus Sulfobacillus declined.However,with the aeration of N_2,the proportion of genus Acidithiobacillus and Leptospirillum increased,but genus Sulfobacillus decreased.When there was no aeration,the microbial community was similar to the inocula with the proportion of genus Leptospirillum mounted.These results indicated that the limitation of oxygen could change the bioleaching microbial community and the aeration of CO_2 and N_2 was favourable for the growth of sulfur-oxidizer(At.caldus) and iron-oxidizer(L.ferriphilum) respectively,which could be used for the regulation of microorganisms' role in mineral bioleaching.Simulated heap bioleaching of low-grade high pyrite-bearing chalcocite ore was conducted at 40 °C with aeration of CO2 and N2.Ore samples were collected at day 43,64,85,106 and subjected to microbial community analysis by 16S rRNA gene clone library.Phylogenetic analyses of 16S rDNA fragments revealed that the retrieved sequences are mainly related to genus Acidithiobacillus,Leptospirillum and Sulfobacillus.Aeration of CO2 and N2 significantly impacted the microbial community composition.When CO2 was aerated,the proportion of genus Acidithiobacillus considerably increased,whereas the proportion of genus Leptospirillum and genus Sulfobacillus declined.However,with the aeration of N2,the proportion of genus Acidithiobacillus and Leptospirillum increased,but genus Sulfobacillus decreased.When there was no aeration,the microbial community was similar to the inocula with the proportion of genus Leptospirillum mounted.These results indicated that the limitation of oxygen could change the bioleaching microbial community and the aeration of CO2 and N2 was favourable for the growth of sulfur-oxidizer(At.caldus) and iron-oxidizer(L.ferriphilum) respectively,which could be used for the regulation of microorganisms' role in mineral bioleaching.

关 键 词:BIOLEACHING CO2 N2 CHALCOCITE PYRITE microbial community 

分 类 号:TD952[矿业工程—选矿] Q938[生物学—微生物学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象