检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国矿业大学计算机科学与技术学院,徐州221116 [2]中国科学院计算技术研究所智能信息处理重点实验室,北京100190
出 处:《计算机科学》2016年第3期49-53,共5页Computer Science
基 金:国家重点基础研究发展规划(973计划)(2013CB329502);国家自然科学基金(61379101)资助
摘 要:孪生支持向量机(TWSVM)的研究是近来机器学习领域的一个热点。TWSVM具有分类精度高、训练速度快等优点,但训练时没有充分利用样本的统计信息。作为TWSVM的改进算法,基于马氏距离的孪生支持向量机(TMSVM)在分类过程中考虑了各类样本的协方差信息,在许多实际问题中有着很好的应用效果。然而TMSVM的训练速度有待提高,并且仅适用于二分类问题。针对这两个问题,将最小二乘思想引入TMSVM,用等式约束取代TMSVM中的不等式约束,将二次规划问题的求解简化为求解两个线性方程组,得到基于马氏距离的最小二乘孪生支持向量机(LSTMSVM),并结合有向无环图策略(DAG)设计出基于马氏距离的最小二乘孪生多分类支持向量机。为了减少DAG结构的误差累积,构造了基于马氏距离的类间可分性度量。人工数据集和UCI数据集上的实验均表明,所提算法不仅有效,而且相对于传统多分类SVM,其分类性能有明显提高。Twin support vector machine (TWSVM) is a recent hot spot in the field of machine learning.TWSVM achieves fast training speed and good performance for data classification.However,it does not take full advantage of the statistical information in training samples.As an improved algorithm of TWSVM,mahalanobis distance-based twin support vector machine (TMSVM) takes the covariance of each class of data into consideration and is suitable for many real problems.However,the learning speed of TMSVW remains to be improved.Moreover,the approach only deals with binary classification problems.To solve these problems,this paper formulated a least squares version of TMSVM by considering equality type constraints instead of inequalities of TMSVM,which makes the solution follow from solving a set of linear equations instead of quadratic programming,and extended the binary classier into a new multiclass classification algorithm with directed acyclie graph (DAG).In order to reduce error accumulation in DAG structure,a mahalanobis distance-based distance measure was designed as the class separability criterion.The experimental results on toy dataset and UCI datasets show that the proposed algorithm is efficient and has better classification accuracy than traditional multi-class SVM.
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.170