检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]解放军理工大学指挥信息系统学院,南京210007
出 处:《计算机科学》2016年第3期93-98,共6页Computer Science
基 金:江苏省自然科学基金项目(BK20131069)资助
摘 要:随着移动社交网络的不断发展,利用用户发布的位置信息为其提供基于地域的个性化推荐服务不仅给用户提供了便利,也为商户带来了巨大的潜在利益。位置预测技术作为此类服务中的关键技术,是移动社交网络中的重要研究内容之一。结合移动社交网络的特点,提出了基于轨迹"分解-重构"的位置预测方法 TraDR,利用公开易得的先验知识,为用户建立个性化的位置推理模型,有效解决了常见位置预测算法所面临的"轨迹数据稀疏问题"。基于真实数据集的实验验证了该预测方法在预测有效性及效率方面的优越性。With the development of geo-social networks,the practice of utilizing the locations published by GeoSN users to offer them personalized reference services not only benefits users,but also brings the business providers potential profits.As the fundamental enabling technology of the location-based reference services,destination prediction becomes one of the most significant research topics in GeoSNs.Considering the features of GeoSNs,this paper proposed a novel destination prediction method named TraDR specially for GeoSNs based on trajectory decomposition and reconstruction to construct personalized inference model for each target GeoSN user,which not only solves the "trajectory data sparsity problem" faced by common location inference models,but also takes advantages of the rich commonly available public background information.Experiments based on real world dataset were carried out,and results prove the high performance of the presented method both in prediction accuracy and running efficiency.
分 类 号:TP393.08[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.147.45.232