检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:付磊[1] 苏亚[2] 李果华[1] 姚晓天[1,2]
机构地区:[1]江南大学理学院,江苏无锡214000 [2]河北大学物理学院光信息创新中心,河北保定071002
出 处:《激光与光电子学进展》2016年第3期191-196,共6页Laser & Optoelectronics Progress
基 金:国际科技合作专项(2010DFB13180);江苏省基础研究计划(BK20130374);苏州市医疗器械与新医药科技计划(ZXY2012026)
摘 要:在光学相干层析术(OCT)无创血糖监测过程中,预测模型的建立容易受异常点的干扰。采用广义极大似然估计(M估计)建立的预测模型能够有效地通过权函数降低异常点在模型中的权重。通过人体血糖钳夹临床实验和口服葡萄糖耐量测试实验,利用M估计和最小二乘估计法(OLS估计)两种方法建立了血糖预测模型,采用交互验证法对两种模型的均方根误差(RMSE)进行了比较。对比结果表明,M估计能有效地降低血糖预测模型的RMSE值。此外,利用克拉克误差表格分析法对两个模型的预测结果进行评估,评估结果表明采用M估计建立的血糖预测模型的准确性和稳定性高于OLS估计,因此M估计更适合临床上的OCT无创血糖监测应用。During the model building process, the blood glucose monitoring model can be easily damaged by abnormal points. Maximum likelihood type estimates (M estimates) introduced in this paper can decrease the weight of abnormal points in the blood glucose model. In glucose clamp experiment and human oral glucose tolerance test, M estimates and ordinary least sum of squares estimates (OLS estimates) are applied to build the blood glucose monitoring models, respectively. Root mean square error (RMSE) of the model built by M estimates is calculated by using interactive verification method. It shows that M estimates can effectively reduce the RMSE value of blood glucose prediction results. In addition, predicted values of blood glucose by the two models are evaluated by Clarke error grid analysis. The results show that the veracity and stability of the blood prediction model built by M estimates are higher than that built by OLS estimates. Thus, the method of M estimates is more suitable for clinical application of noninvasive blood glucose sensing using optical coherence tomography.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.43