检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Xiao YANG Jin HUANG Yu OUYANG
机构地区:[1]Department of Civil Engineering, Shanghai University
出 处:《Applied Mathematics and Mechanics(English Edition)》2016年第4期513-528,共16页应用数学和力学(英文版)
摘 要:Considering the effect of crack gap, the bending deformation of the Timoshenko beam with switching cracks is studied. To represent a crack with gap as a nonlinear unidirectional rotational spring, the equivalent flexural rigidity of the cracked beam is derived with the generalized Dirac delta function. A closed-form general solution is obtained for bending of a Timoshenko beam with an arbitrary number of switching cracks. Three examples of bending of the Timoshenko beam are presented. The influence of the beam's slenderness ratio, the crack's depth, and the external load on the crack state and bending performances of the cracked beam is analyzed. It is revealed that a cusp exists on the deflection curve, and a jump on the rotation angle curve occurs at a crack location. The relation between the beam's deflection and load is bilinear, each part corresponding to an open or closed state of crack, respectively. When the crack is open, flexibility of the cracked beam decreases with the increase of the beam's slenderness ratio and the decrease of the crack depth. The results are useful in identifying non-destructive cracks on a beam.Considering the effect of crack gap, the bending deformation of the Timoshenko beam with switching cracks is studied. To represent a crack with gap as a nonlinear unidirectional rotational spring, the equivalent flexural rigidity of the cracked beam is derived with the generalized Dirac delta function. A closed-form general solution is obtained for bending of a Timoshenko beam with an arbitrary number of switching cracks. Three examples of bending of the Timoshenko beam are presented. The influence of the beam's slenderness ratio, the crack's depth, and the external load on the crack state and bending performances of the cracked beam is analyzed. It is revealed that a cusp exists on the deflection curve, and a jump on the rotation angle curve occurs at a crack location. The relation between the beam's deflection and load is bilinear, each part corresponding to an open or closed state of crack, respectively. When the crack is open, flexibility of the cracked beam decreases with the increase of the beam's slenderness ratio and the decrease of the crack depth. The results are useful in identifying non-destructive cracks on a beam.
关 键 词:Timoshenko beam switching crack crack gap generalized function parameter study
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.120