机构地区:[1]Laboratory for Climate Studies,National Climate Center,China Meteorological Administration,Beijing 100081 [2]State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029
出 处:《Advances in Atmospheric Sciences》2016年第6期685-694,共10页大气科学进展(英文版)
基 金:sponsored by the National Basic Research Program of China(Grant No.2012CB955202);the National Public Benefit(Meteorology)Research Foundation of China(Grant No.GYHY201306018);the National Natural Science Foundation of China(Grant Nos.41176013 and41230420)
摘 要:Model errors offset by constant and time-variant optimal forcing vector approaches (termed COF and OFV, respectively) are analyzed within the framework of E1 Nifio simulations. Applying the COF and OFV approaches to the well-known Zebiak-Cane model, we re-simulate the 1997 and 2004 E1 Nifio events, both of which were poorly degraded by a certain amount of model error when the initial anomalies were generated by coupling the observed wind forcing to an ocean com- ponent. It is found that the Zebiak-Cane model with the COF approach roughly reproduced the 1997 E1 Nifio, but the 2004 E1 Nifio simulated by this approach defied an ENSO classification, i.e., it was hardly distinguishable as CP-E1 Nifio or EP-E1 Nifio. In hoth E1 Nifio simulations, substituting the COF with the OFV improved the fit between the simulations and obser- vations because the OFV better manages the time-variant errors in the model. Furthermore, the OFV approach effectively corrected the modeled E1 Nifio events even when the observational data (and hence the computational time) were reduced. Such a cost-effective offset of model errors suggests a role for the OFV approach in complicated CGCMs.Model errors offset by constant and time-variant optimal forcing vector approaches (termed COF and OFV, respectively) are analyzed within the framework of E1 Nifio simulations. Applying the COF and OFV approaches to the well-known Zebiak-Cane model, we re-simulate the 1997 and 2004 E1 Nifio events, both of which were poorly degraded by a certain amount of model error when the initial anomalies were generated by coupling the observed wind forcing to an ocean com- ponent. It is found that the Zebiak-Cane model with the COF approach roughly reproduced the 1997 E1 Nifio, but the 2004 E1 Nifio simulated by this approach defied an ENSO classification, i.e., it was hardly distinguishable as CP-E1 Nifio or EP-E1 Nifio. In hoth E1 Nifio simulations, substituting the COF with the OFV improved the fit between the simulations and obser- vations because the OFV better manages the time-variant errors in the model. Furthermore, the OFV approach effectively corrected the modeled E1 Nifio events even when the observational data (and hence the computational time) were reduced. Such a cost-effective offset of model errors suggests a role for the OFV approach in complicated CGCMs.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...