检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张广仁[1,2] 吴云[2,3] 孙仙玲[1,2] 吴莎[2] 毕宇安[2,3] 王振中[2,3] 萧伟[1,2,3]
机构地区:[1]南京中医药大学药学院,南京210000 [2]中药制药过程新技术国家重点实验室,连云港222001 [3]江苏康缘药业股份有限公司,连云港222001
出 处:《世界科学技术-中医药现代化》2016年第2期313-317,共5页Modernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology
基 金:科学技术部国家"重大新药创制"科技重大专项(2011ZX09201-201-20):子宫内膜异位症首选用药-散结镇痛胶囊大品种技术改造;负责人:荣根新
摘 要:目的:本实验对近红外光谱(Near Infrared,NIR)分析技术在散结镇痛胶囊干燥过程中水分含量检测的可行性进行分析研究。方法:收集67批散结镇痛胶囊干燥过程不同水分含量的样品,扫描NIR光谱,分别考察比较不同波段和不同预处理方式所建立的模型的性能,最终选择1350—2030 nm波段,Mean Center预处理方式,运用偏最小二乘法(PLS)建立NIRS与水分含量值之间的多元校正模型,并用此模型进行预测。结果:结果发现,选取1350—2030 nm波段,Mean Center处理方式校正后建立的水分含量模型R_c=0.9950,R_v=0.9941,RMSEC=0.0096,RMSEV=0.0167,PC=4(软件根据PRESS值最小提供的主因子数),所建立的模型较其他条件建立的模型性能更稳定,模型预测性能较优,表明样品光谱与其中水分质量分数之间存在良好的相关性。该模型对9批散结镇痛胶囊样本水分含量进行预测,R_p=0.9916,表明预测效果良好,能够满足中药生产过程中质量控制要求。结论:建立的近红外水分定量模型可以准确预测散结镇痛胶囊干燥过程水分含量,证实了NIR技术在散结镇痛胶囊干燥过程水分含量检测的可行性。This study mainly evaluated the feasibility of moisture content of Sanjie Zhentong capsules(SJZTC)with near infrared(NIR) reflectance spectroscopy content.Different water content samples were collected from sixty-seven batches of SJZTC,and NIR off-line spectra was acquired.The property of the proposed model with different wavebands and pretreatments was compared.The 1 350-2 030 nm wavebands and Mean Center pretreatments were selected.The calibration between NIR spectra and the reference values of moisture content was obtained by partial least squares(PLS) method and optimized through inner cross validation.As a result,the moisture content model correction and verification coefficient were 0.995 0 and 0.994 1,while RMSEC,RMSEV and PC values were 0.009 6,0.016 7,and 4,respectively,which displayed a good performance,stability,prediction and good statue of relationship between spectrum and water content of the moisture quantitative model.This model was used in the prediction of moisture content from 9 batches of SJZTC samples,and the prediction correlation coefficient was 0.991 6,which met the requirements of quality control in production process of Chinese medicine.In Conclusion,the moisture quantitative model accurately predicted moisture content of drying process in SJZTC,which confirmed the feasibility of NIR technology in the detection of moisture content on the drying process.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15