检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]兰州交通大学电子与信息工程学院,甘肃兰州730070
出 处:《兰州交通大学学报》2016年第1期36-41,共6页Journal of Lanzhou Jiaotong University
基 金:中国铁路总公司科技研究开发计划课题(2014X008-F)
摘 要:针对短文本特征稀疏、上下文依赖而导致的传统文本分类法应用效果不佳的问题,提出一种基于卡方特征和BTM的短文本分类法.首先提取短文本的卡方特征,再利用BTM对短文本建模,获得对应的文档-话题概率特征,最后融合两种特征并基于SVM分类算法实现短文本分类.实验结果表明,相比于常规分类方法,该方法具有较高的Macro-F1值,对短文本的分类具有良好的效果.Aiming at the shortage of traditional text classification method on account of text feature sparse and context dependency,a short text classification method based on Chi-square feature and BTM is proposed.Firstly,Chi-square features of short text are extracted,then it is modeled by BTM to get the corresponding document-topic probability features.Finally,the short text classification is obtained by combining these two features and SVM classification algorithm.Experimental results show that this method has high Macro-F1 value compared to the conventional classification method and verify that the method achieves a better performance in short text classification.
分 类 号:TP391.1[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28