检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《应用泛函分析学报》2016年第1期68-75,共8页Acta Analysis Functionalis Applicata
基 金:国家自然科学基金(11226125,11301379)
摘 要:设H1,H2,H3是三个实Hilbert空间,{Ci}mi=1(∈)H1,{Qj}rj=1(∈)H2是非空闭凸集,A:H1 →H3,B:H2→H3是两个有界线性算子.多集分裂等式问题可表述为:找点x∈∩mi=1 Ci,y∈∩rj=1 Qj使得Ax=By.当m=r=1时,多集分裂等式问题简化为分裂等式问题.分裂等式问题及多集分裂等式问题在现实世界中有广泛应用.例如医学图像恢复,计算机断层扫描,放射治疗等等.这篇文章运用一个新的探索方向构造迭代算法来解分裂等式问题及多集分裂等式问题,目的在于提高收敛速度.Let H1,H2, Ha be real Hilbert spaces, and let Ci}mi=1(∈)H1,{Qj}rj=1(∈)H2 be nonempty closed convex sets, A:H1 →H3,B:H2→H3 be two bounded and linear operators. The multiple-sets split equality problem is to find x∈∩mi=1 Ci,y∈∩rj=1 Qjsuch that Ax = By. When m = r = 1, the multiple-sets split equality problem reduces to the split equality problem. The applicability of split equality problem and multiple- sets split equality problem covers many situation in real world, for instance medical image reconstruction, computer tomograph and radiation therapy treatment and so on. This paper, by using a new searching direction, presents a variant algorithm to solve the split equality problem and multiple-sets split equality problem aiming at improving convergence.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.101.53