检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵英男[1,2,3] 何祥健[3] 陈北京[1,2] 赵晓平[1,2]
机构地区:[1]南京信息工程大学江苏网络监控工程中心,南京210044 [2]南京信息工程大学计算机与软件学院,南京210044 [3]悉尼科技大学计算机与通信学院
出 处:《Journal of Southeast University(English Edition)》2016年第1期35-38,共4页东南大学学报(英文版)
基 金:The Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD);the National Natural Science Foundation of China(No.61572258,61103141,51405241);the Natural Science Foundation of Jiangsu Province(No.BK20151530);Overseas Training Programs for Outstanding Young Scholars of Universities in Jiangsu Province
摘 要:To improve the classification performance of the kernel minimum squared error( KMSE), an enhanced KMSE algorithm( EKMSE) is proposed. It redefines the regular objective function by introducing a novel class label definition, and the relative class label matrix can be adaptively adjusted to the kernel matrix.Compared with the common methods, the newobjective function can enlarge the distance between different classes, which therefore yields better recognition rates. In addition, an iteration parameter searching technique is adopted to improve the computational efficiency. The extensive experiments on FERET and GT face databases illustrate the feasibility and efficiency of the proposed EKMSE. It outperforms the original MSE, KMSE,some KMSE improvement methods, and even the sparse representation-based techniques in face recognition, such as collaborate representation classification( CRC).为了提高核最小均方误差(KMSE)方法的识别能力,提出一种增强KMSE方法(EKMSE).该方法重新定义KMSE目标函数,引入一个新的类别标签定义,并使该定义下的类别标签矩阵能够随核矩阵自适应调整.与通常的目标函数相比,它能够使不同类别之间的距离增大,进而提高识别率.同时该算法在参数搜索中采用了迭代技术,有效提高了算法的计算效率.在FERET和GT人脸库上进行了充分的实验,结果表明EKMSE算法可行有效.该算法不仅优于原MSE,KMSE以及KMSE改进算法,也优于目前脸识别中的基于稀疏算法的最新技术CRC算法.
关 键 词:minimum squared error kernel minimum squared error pattern recognition face recognition
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249