应用ROC曲线评价不同抗原检测麻风病特异性抗体的价值  

Application of ROC Curve to Evaluate Different Antigens for Diagnosis of Leprosy

在线阅读下载全文

作  者:温艳[1,2] 尤元刚[1,2] 袁联潮[1,2] 刘健[1,2] 

机构地区:[1]首都医科大学附属北京友谊医院北京热带医学研究所,北京100050 [2]热带病防治研究北京市重点实验室,北京100050

出  处:《中国皮肤性病学杂志》2016年第4期356-358,365,共4页The Chinese Journal of Dermatovenereology

摘  要:目的应用ROC曲线评价不同抗原采用ELISA检测麻风病特异性抗体的价值。方法筛选经金标准确认的61例麻风病和42例对照标本,应用ELISA法检测,比较不同的麻风特异性抗原的检测效率。结果 LID-1,NDO-BSA,NDO-LID三种抗原检测多菌型麻风(MB)患者抗体阳性率分别为92.11%,89.47%,92.11%;检测少菌型麻风(PB)患者抗体阳性率分别为52.17%,60.87%,47.83%。将病例组根据不同的型别分为MB和PB,MB,PB三个组,通过ROC曲线计算ROC曲线下面积,当病例组包括MB和PB时,NDO-LID抗原AUROC面积最大,等于0.86;当病例组只包括MB时,也是NDO-LID抗原AUROC面积最大,等于0.95,当病例组为PB时,NDO-BSA抗原AUROC面积最大,等于0.74。提示ELISA方法对MB检测效率高于PB,三种抗原中检测MB患者,NDO-LID最优,对PB患者NDO-BSA稍优于其他抗原。结论 ROC曲线是评价不同抗原检测麻风病特异性抗体效率的有效方法。Objective Use ROC curve to evaluate different antigens for the early diagnosis of leprosy. Methods A total of 61 serum specimens confirmed by the gold standard and 42 control were selected and detected by ELISA with different antigens. Results The positive rates of MB with LID - 1, NDO - BSA, NDO - LID were 92.11% ,89.47% and 92.11% , respectively,and that of PB were 52.17% ,60.87% and 47.83% , respectively. The case group was divided into MB and PB, MB, PB three groups according to the different type. The ROC curve had the largest area under the curve (AUC) accounting for the three groups of 0. 86 (MB and PB) ,0.95 (MB), and 0.74 (PB). That represented the antigens NDO-LID, NDO-LID and NDO- BSA in turn. It showed that the efficiency of ELISA method for detecting MB was higher than that of PB. Among three kinds of antigen detection in patients with MB, NDO-LID was optimal. In patients with PB, NDO-BSA was slightly better than other antigens. Conclusion The ROC curve is and effective way to determine the detection efficiency of different antigens.

关 键 词:ROC曲线 麻风病 

分 类 号:R755[医药卫生—皮肤病学与性病学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象