Thermodynamic Analysis and Experimental Study on Reaction of CO_2 Gas with Hot Metal  被引量:2

Thermodynamic Analysis and Experimental Study on Reaction of CO_2 Gas with Hot Metal

在线阅读下载全文

作  者:Guo WEI Zhi-tao LI Zi-liang LI Qiang-jian GAO Feng-man SHEN 

机构地区:[1]School of Metallurgy,Northeastern University

出  处:《Journal of Iron and Steel Research International》2016年第2期98-102,共5页

基  金:Item Sponsored by National Natural Science Foundation of China and Baosteel Group Corporation of China(51074206);Fundamental Research Funds for Central Universities of China(N120402011)

摘  要:The reaction of CO2 gas with hot metal was investigated based on the thermodynamic analysis and experi- mental results. It shows that both silicon and carbon in hot metal can be oxidized by CO2 gas in the temperature range of 1300-1 500 ℃. When using graphite crucible, temperature has little influence on final mass percent of car bon w[c] because of the carburization effect. Decarburization degree rises significantly with increasing gas injection rate and w[c] can be reduced to 3.2% at most when using MgO crucible. I.ower temperature or higher gas injection rate is propitious to promote desilication reaction, but only 5%- 10% of desilication ratio could be obtained in 20 rain. The final mass percent of silicon W[si] when using MgO crucible is lower than that when using graphite crucible. Ex- perimental results also demonstrate that CO2 injection has no effect on the concentration of manganese, sulfur and phosphorus in hot metal. In view of the weak oxidation ability and temperature drop of hot metal, CO2 gas is sugges- ted to be used as carrier gas in desilication process rather than oxidizing agent.The reaction of CO2 gas with hot metal was investigated based on the thermodynamic analysis and experi- mental results. It shows that both silicon and carbon in hot metal can be oxidized by CO2 gas in the temperature range of 1300-1 500 ℃. When using graphite crucible, temperature has little influence on final mass percent of car bon w[c] because of the carburization effect. Decarburization degree rises significantly with increasing gas injection rate and w[c] can be reduced to 3.2% at most when using MgO crucible. I.ower temperature or higher gas injection rate is propitious to promote desilication reaction, but only 5%- 10% of desilication ratio could be obtained in 20 rain. The final mass percent of silicon W[si] when using MgO crucible is lower than that when using graphite crucible. Ex- perimental results also demonstrate that CO2 injection has no effect on the concentration of manganese, sulfur and phosphorus in hot metal. In view of the weak oxidation ability and temperature drop of hot metal, CO2 gas is sugges- ted to be used as carrier gas in desilication process rather than oxidizing agent.

关 键 词:hot metal desilication reaction decarburization reaction thermal equilibrium gas injection 

分 类 号:TF531[冶金工程—钢铁冶金]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象