检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Yong-li LI Jing-kui QU Guang-ye WEI Tao QI
机构地区:[1]National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology,Institute of Process Engineering,Chinese Academy of Sciences [2]Key Laboratory of Green Process and Engineering,Institute of Process Engineering,Chinese Academy of Sciences
出 处:《Journal of Iron and Steel Research International》2016年第2期103-108,共6页
基 金:Item Sponsored by National Natural Science Foundation of China(51304181);National Science Foundation for Distinguished Young Scholars of China(51125018)
摘 要:Boron-bearing magnetite concentrate is typically characterized by low grade of iron and boron (wTFe = 51%- 54%, WB2O3 =6%-8%), as well as the close intergrowth of ascharite phase and magnetite phase. A promising technology was proposed to separate iron and boron by coupling the direct reduction of iron oxides and Na activation of boron minerals together. The influence of Na2CO3 as additive on the direct reduction of boron-bearing magnetite was studied by chemical analysis, kinetic analysis, XRD analysis and SEM analysis. The results showed that the ad- dition of Na2CO3 not only activated boron minerals, but also reduced the activation energy of the reaction and pro- moted the reduction of iron oxides. Besides, the addition of Na2CO3 changed the composition and melting point of non-ferrous phase, and then promoted the growth and aggregation of iron grains, which was conducive to the subse- quent magnetic separation. Thus, the coupling of the two processes is advantageous,Boron-bearing magnetite concentrate is typically characterized by low grade of iron and boron (wTFe = 51%- 54%, WB2O3 =6%-8%), as well as the close intergrowth of ascharite phase and magnetite phase. A promising technology was proposed to separate iron and boron by coupling the direct reduction of iron oxides and Na activation of boron minerals together. The influence of Na2CO3 as additive on the direct reduction of boron-bearing magnetite was studied by chemical analysis, kinetic analysis, XRD analysis and SEM analysis. The results showed that the ad- dition of Na2CO3 not only activated boron minerals, but also reduced the activation energy of the reaction and pro- moted the reduction of iron oxides. Besides, the addition of Na2CO3 changed the composition and melting point of non-ferrous phase, and then promoted the growth and aggregation of iron grains, which was conducive to the subse- quent magnetic separation. Thus, the coupling of the two processes is advantageous,
关 键 词:LUDWIGITE kinetic analysis direct reduction magnetic separation sodium carbonate
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28