机构地区:[1]Key Laboratory of Advanced Forging & Stamping Technology and Science(Yanshan University),Ministry of Education of China [2]Yanshan University Library,Yanshan University [3]National Engineering Research Center for Equipment and Technology of Cold Strip Rolling,Yanshan University
出 处:《Journal of Iron and Steel Research International》2016年第3期238-243,共6页
基 金:Item Sponsored by National Natural Science Foundation of China(51101136);Scientific and Technological Research Foundation for Outstanding Young Talents of Hebei Provincial Universities of China(Y2012034);College Innovation Team Leader Training Program of Hebei Province of China(LJRC012)
摘 要:Hot compression experiments conducted on a Gleeble-3500thermo-mechanical simulator and metallographic observation tests were employed to study the critical conditions of dynamic recrystallization(DRX)of 316 LN austenitic stainless steel.The true stress-true strain curves of 316 LN were obtained at deformation temperatures ranging from 900℃to 1 200℃and strain rates ranging from 0.001s-1 to 10s-1.Based on the above tests,the critical conditions of DRX were determined and compared with those obtained from work-hardening theory and the Cingara-McQueen flow stress model.Furthermore,the microstructure was observed to validate the calculated results.The ratio of critical strain to peak strain(εc/εp)for 316 LN was determined,and the quantitative relationship between the critical strain and the deformation parameters of 316 LN was elucidated.The results demonstrated that the onset of DRX corresponds to the constant normalized strain hardening rate(Γ),namely,the critical strain hardening rateΓcfor316LN is equal to 0.65.Hot compression experiments conducted on a Gleeble-3500thermo-mechanical simulator and metallographic observation tests were employed to study the critical conditions of dynamic recrystallization(DRX)of 316 LN austenitic stainless steel.The true stress-true strain curves of 316 LN were obtained at deformation temperatures ranging from 900℃to 1 200℃and strain rates ranging from 0.001s-1 to 10s-1.Based on the above tests,the critical conditions of DRX were determined and compared with those obtained from work-hardening theory and the Cingara-McQueen flow stress model.Furthermore,the microstructure was observed to validate the calculated results.The ratio of critical strain to peak strain(εc/εp)for 316 LN was determined,and the quantitative relationship between the critical strain and the deformation parameters of 316 LN was elucidated.The results demonstrated that the onset of DRX corresponds to the constant normalized strain hardening rate(Γ),namely,the critical strain hardening rateΓcfor316LN is equal to 0.65.
关 键 词:316LN austenitic stainless steel hot deformation dynamic recrystallization critical condition
分 类 号:TG142.71[一般工业技术—材料科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...