The Impulsive Solution for a Semi-linear Singularly Perturbed Differential-difference Equation  被引量:1

The Impulsive Solution for a Semi-linear Singularly Perturbed Differential-difference Equation

在线阅读下载全文

作  者:Ai-feng WANG Mei XU Ming-kang NI 

机构地区:[1]School of Mathematical Science, Huaiyin Normal University [2]Department of Mathematics, East China Normal University

出  处:《Acta Mathematicae Applicatae Sinica》2016年第2期333-342,共10页应用数学学报(英文版)

基  金:Supported by the National Natural Science Foundation of China(N.11501236,N.11471118,N.30921064 and 90820307),the Innovation Project in the Chinese Academ;Department of Mathematics,Shanghai Key Laboratory of PMMP,East China Normal University

摘  要:The impulsive solution for a semi-linear singularly perturbed differential-difference equation is studied. Using the methods of boundary function and fractional steps, we construct the formula asymptotic expansion of the problem. At the same time, Based on sewing techniques, the existence of the smooth impulsive solution and the uniform validity of the asymptotic expansion are proved.The impulsive solution for a semi-linear singularly perturbed differential-difference equation is studied. Using the methods of boundary function and fractional steps, we construct the formula asymptotic expansion of the problem. At the same time, Based on sewing techniques, the existence of the smooth impulsive solution and the uniform validity of the asymptotic expansion are proved.

关 键 词:singularly perturbed differential-difference equation delay argument asymptotic expansion im-pulsive solution boundary function 

分 类 号:O175.7[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象