Four Forbidden Subgraph Pairs for Hamiltonicity of 3-connected Graphs  

Four Forbidden Subgraph Pairs for Hamiltonicity of 3-connected Graphs

在线阅读下载全文

作  者:Hou-yuan LIN Zhi-quan HU 

机构地区:[1]School of Mathematics and Quantitative Economics, Shandong University of Finance and Economics [2]Faculty of Mathematics and Statistics, Central China Normal University

出  处:《Acta Mathematicae Applicatae Sinica》2016年第2期469-476,共8页应用数学学报(英文版)

基  金:Supported by the National Natural Science Foundation of China(No.11371162 and No.11271149);A project of Shandong Province Higher Educational Science and Technology Program(No.J15LI52);Science and Technology Development Project of Shandong Province(No.2014GGX101033)

摘  要:For non-negative integers i,j and k, we denote the generalized net as Ni,j,k, which is a triangle with disjoint paths of length i, j and k, attached to distinct vertices of the triangle. In this paper, we prove that every 3-connected {K1,3,N8-i,i,1}-free graph is hamiltonian, where 1〈i〈4.For non-negative integers i,j and k, we denote the generalized net as Ni,j,k, which is a triangle with disjoint paths of length i, j and k, attached to distinct vertices of the triangle. In this paper, we prove that every 3-connected {K1,3,N8-i,i,1}-free graph is hamiltonian, where 1〈i〈4.

关 键 词:hamiltonian cycle forbidden subgraphs claw-free graphs CLOSURE 

分 类 号:O157.5[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象