检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]武汉大学电气工程学院,武汉430072 [2]湖南科技大学信息与电气工程学院,湘潭411201
出 处:《电气工程学报》2016年第3期34-40,共7页Journal of Electrical Engineering
基 金:Supported by National Natural Science Funds(61273169,61134006,61105080);the Scientific Research Fund of Hunan Provincial Education Department(13A016);the Science and Technology Planning Project of Xiangtan City Hunan Province(NY20141006);Hunan Provincial Natural Science Foundation of China(11JJ4057,14JJ2099)
摘 要:能量解析在分解综合负荷及提高设备的能量效率方面起到重要作用。当前,能量解析方法主要存在较低准确性和效率问题。论文提出一种基于低频监控数据的多输出极限学习的能源解析方法。该方法的特征映射函数可一次随机生成且无需调整其参数,与支持向量机方法相比,其优化目标函数具有较少的优化约束条件且更易实现。用实际记录的房屋能量数据进行仿真,仿真结果表明:与支持向量机相比,本文方法具有更高的训练速度和分类精度、更少的计算时间和更强的泛化能力。Energy disaggregation plays an important role in the rational use and management of energy within a whole building. However, the current energy disaggregation methods encounter the problems of low accuracy to classify and long computational time to choose appropriate parameters. To solve this difficulty, this paper proposes a novel energy disaggregation method based multi-output extreme learning machine(MO-ELM) to analysis low-frequency monitoring data gathered by meters distributed in a building. The MO-ELM whose parameters of feature mapping need not be tuned and can be fixed once randomly generated requires fewer optimization constraints with the objective function and results in simpler implementation compared to SVM. The evaluation results using a dataset of power traces collected in real-world home setting shows that proposed method have a satisfied classification accuracy, training speed and generalization performance and less computational time.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171