Preliminary research on dual-energy X-ray phase-contrast imaging  

Preliminary research on dual-energy X-ray phase-contrast imaging

在线阅读下载全文

作  者:韩华杰 王圣浩 高昆 王志立 张灿 杨萌 张凯 朱佩平 

机构地区:[1]National Synchrotron Radiation Laboratory, University of Science and Technology of China [2]School of Engineering Science, University of Science and Technology of China [3]Institute of High Energy Physics, Chinese Academy of Sciences

出  处:《Chinese Physics C》2016年第4期141-148,共8页中国物理C(英文版)

基  金:Supported by Major State Basic Research Development Program(2012CB825800);Science Fund for Creative Research Groups(11321503);National Natural Science Foundation of China(11179004,10979055,11205189,11205157)

摘  要:Dual-energy X-ray absorptiometry(DEXA) has been widely applied to measure the bone mineral density(BMD) and soft-tissue composition of the human body. However, the use of DEXA is greatly limited for lowZ materials such as soft tissues due to their weak absorption, while X-ray phase-contrast imaging(XPCI) shows significantly improved contrast in comparison with the conventional standard absorption-based X-ray imaging for soft tissues. In this paper, we propose a novel X-ray phase-contrast method to measure the area density of low-Z materials, including a single-energy method and a dual-energy method. The single-energy method is for the area density calculation of one low-Z material, while the dual-energy method aims to calculate the area densities of two low-Z materials simultaneously. Comparing the experimental and simulation results with the theoretical ones, the new method proves to have the potential to replace DEXA in area density measurement. The new method sets the prerequisites for a future precise and low-dose area density calculation method for low-Z materials.Dual-energy X-ray absorptiometry(DEXA) has been widely applied to measure the bone mineral density(BMD) and soft-tissue composition of the human body. However, the use of DEXA is greatly limited for lowZ materials such as soft tissues due to their weak absorption, while X-ray phase-contrast imaging(XPCI) shows significantly improved contrast in comparison with the conventional standard absorption-based X-ray imaging for soft tissues. In this paper, we propose a novel X-ray phase-contrast method to measure the area density of low-Z materials, including a single-energy method and a dual-energy method. The single-energy method is for the area density calculation of one low-Z material, while the dual-energy method aims to calculate the area densities of two low-Z materials simultaneously. Comparing the experimental and simulation results with the theoretical ones, the new method proves to have the potential to replace DEXA in area density measurement. The new method sets the prerequisites for a future precise and low-dose area density calculation method for low-Z materials.

关 键 词:DEXA refraction replace grating pixel Talbot sorption downstream precise listed 

分 类 号:O434.1[机械工程—光学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象