检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]哈尔滨工业大学深圳研究生院,广东深圳518055
出 处:《应用科学学报》2016年第2期115-126,共12页Journal of Applied Sciences
基 金:国家自然科学基金(No.61371102;No.61001092)资助
摘 要:提出了一种基于双密度双树复小波(double-density dual-tree complex wavelet transform,DDDT-CWT)基的结构化CS图像重构算法,该算法将图像在双密度双树复小波变换下的系数呈现的树结构化特征与Co Sa MP重构算法相结合,实现了对原始图像的更精确重构.实验结果表明:在相同压缩比的前提下,与传统使用DWT基且未考虑变换系数结构化特征的重构算法相比,使用DDDT-CWT基和融入结构化特征的重构算法分别可获得2.9~3.2 d B与0.2~1.2 d B的增益,综合两者后的重构算法可获得3.8~4.3 d B以上的增益.We propose a new structured compressed sensing recovery algorithm of images based on double-density dual-tree complex wavelet transform(DDDT-CWT). The algorithm combines the structured characteristic of coefficients under DDDT-CWT and compressive sample matching pursuit(Co Sa MP) recovery algorithm. It has good reconstructed image performance. Simulation results show advantages of the proposed method as compared with traditional recovery algorithm using DWT basis and without considering structured characteristic of coefficients. With the same compression ratio, PSNR is improved by 2.9~3.2 d B and 0.2~1.2 d B when using the DDDT-CWT basis and considering structured characteristic respectively. The PSNR gain reaches 3.8~4.3 d B when combining these two features together.
关 键 词:压缩感知 双密度双树复小波变换 小波树结构 CoSaMP重构算法
分 类 号:TN919[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15