检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]杭州电子科技大学计算机学院,杭州310018
出 处:《计算机工程与应用》2016年第7期56-61,共6页Computer Engineering and Applications
摘 要:针对云计算环境下满足负载均衡、自动伸缩、绿色节能等需求时所面临的虚拟机(VM)迁移问题,提出一种基于布朗指数平滑法的虚拟机动态整合方法(ES)。利用指数平滑模型预测未来时刻的负载情况,结合最大相关性策略和能源感知最佳适应降序算法(PABFD),实现主机负载的动态平衡。仿真结果显示该方法能够减少数据中心的能源消耗和SLA违例次数,有效提升云基础设施整体资源利用率。For issue of Virtual Machine(VM)migration in cloud computing environment when it comes to meeting the demands of load balancing, auto scaling, green energy-saving etc, this paper designs a scheduling algorithm for dynamic consolidation of virtual machines based on Brown's cubic Exponential Smoothing(ES). By organically integrating the maximum correlation policy and the algorithm denoted Power Aware Best Fit Decreasing(PABFD), the proposed algorithm achieves dynamic balance of the load of entire data center, as well as with the exponential smoothing prediction model to predict the workload condition in future time. The simulation results show that the algorithm can reduce the energy consumption of data centers and Service Level Agreement violations, effectively increasing the overall resource utilization of data center as the core of the cloud infrastructure.
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3