检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]辽宁工程技术大学电子与信息工程学院,辽宁葫芦岛125105
出 处:《计算机工程与应用》2016年第7期181-185,270,共6页Computer Engineering and Applications
基 金:国家科技支撑计划(No.2013bah12f01)
摘 要:为了提高图像检索的准确率和速度,提出了一种多特征组合的图像检索算法。在颜色空间非均匀量化的基础上,利用改进的颜色聚合向量方法提取图像的颜色特征;基于改进的灰度共生矩阵提取纹理特征参数;利用Krawtchouk矩不变量提取图像的形状特征;基于贡献度聚类并建立特征索引库。融合上述特征计算图像间的相似度,使用特征索引对图像进行快速检索。实验结果表明,提出算法的检索精度有较大提高,能快速检索出用户所需的图像。In order to improve the accuracy and speed of image retrieval, a method based on multi-features is presented in this paper. Based on the asymmetrical quantization of color space, improved color coherence vectors are used to extract the color feature; improved gray level co-occurrence matrix is utilized as the texture feature; Krawtchouk moment invariants are introduced to extract the shape feature; it is clustered based on the contribution and establishes image feature index library. The similarity between images is computed based on multi-features fusion, and image fast retrieval is obtainable by using the feature index. Related experiments show that the retrieval precision of the proposed algorithm is improved greatly with faster retrieval speed.
关 键 词:颜色聚合向量 灰度共生矩阵 KRAWTCHOUK矩 贡献度
分 类 号:TP391.3[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.23.53