机构地区:[1]Key Laboratory of Marine Chemistry Theory and Technology,MOE,College of Chemistry and Chemical Engineering,Ocean University of China,Qingdao 266100,P.R.China [2]College of Environmental Science and Engineering,Ocean University of China [3]Jiangsu Marine Environmental Monitoring Forecasting Center,Tidal Flat Research Center of Jiangsu
出 处:《Journal of Ocean University of China》2016年第2期261-270,共10页中国海洋大学学报(英文版)
基 金:supported by Natural Science Foundation of China-Shandong Joint Fund for Marine Science Research Centers (Grant No.U1406403);the Sea Area Use Fund of Jiangsu Province (Environmental Capacity for the Key Coast of Jiangsu Province);the National Natural Science Foundation of China (No.41340046);Modeling work was completed at the Computing Services Center,Ocean University of China
摘 要:Guan River Estuary and adjacent coastal area(GREC) suffer from serious pollution and eutrophicational problems over the recent years.Thus,reducing the land-based load through the national pollutant total load control program and developing hydrodynamic and water quality models that can simulate the complex circulation and water quality kinetics within the system,including longitudinal and lateral variations in nutrient and COD concentrations,is a matter of urgency.In this study,a three-dimensional,hydrodynamic,water quality model was developed in GREC,Northern Jiangsu Province.The complex three-dimensional hydrodynamics of GREC were modeled using the unstructured-grid,finite-volume,free-surface,primitive equation coastal ocean circulation model(FVCOM).The water quality model was adapted from the mesocosm nutrients dynamic model in the south Yellow Sea and considers eight compartments:dissolved inorganic nitrogen,soluble reactive phosphorus(SRP),phytoplankton,zooplankton,detritus,dissolved organic nitrogen(DON),dissolved organic phosphorus(DOP),and chemical oxygen demand.The hydrodynamic and water quality models were calibrated and confirmed for 2012 and 2013.A comparison of the model simulations with extensive dataset shows that the models accurately simulate the longitudinal distribution of the hydrodynamics and water quality.The model can be used for total load control management to improve water quality in this area.Guan River Estuary and adjacent coastal area (GREC) suffer from serious pollution and eutrophicational problems over the recent years. Thus, reducing the land-based load through the national pollutant total load control program and developing hydro- dynamic and water quality models that can simulate the complex circulation and water quality kinetics within the system, including longitudinal and lateral variations in nutrient and COD concentrations, is a matter of urgency. In this study, a three-dimensional, hy- drodynamic, water quality model was developed in GREC, Northern Jiangsu Province. The complex three-dimensional hydrody- namics of GREC were modeled using the unstructured-grid, finite-volume, free-surface, primitive equation coastal ocean circulation model (FVCOM). The water quality model was adapted from the mesocosm nutrients dynamic model in the south Yellow Sea and considers eight compartments: dissolved inorganic nitrogen, soluble reactive phosphorus (SRP), phytoplankton, zooplankton, detritus, dissolved organic nitrogen (DON), dissolved organic phosphorus (DOP), and chemical oxygen demand. The hydrodynamic and wa- ter quality models were calibrated and confirmed for 2012 and 2013. A comparison of the model simulations with extensive dataset shows that the models accurately simulate the longitudinal distribution of the hydrodynamics and water quality. The model can be used for total load control management to improve water quality in this area.
关 键 词:water quality model FVCOM total load control management Guan River Estuary Yellow Sea
分 类 号:X55[环境科学与工程—环境工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...