机构地区:[1]State Key Joint Laboratory of Environmental Simulation and Pollution Control,State Environmental Protection Key Laboratory of Microorganism Application and Risk Control,School of Environment,Tsinghua University,Beijing 100084,China [2]College of Environmental Science and Engineering,Hohai University,Nanjing 210098,China [3]China Power Engineering Consulting Group Co.,LTD.,Beijing 100120,China
出 处:《Journal of Environmental Sciences》2016年第3期146-153,共8页环境科学学报(英文版)
基 金:supported by the National Natural Science Foundation of China(Key Project)(No.51138006);the State Key Joint Laboratory of Environment Simulation and Pollution Control(No.13L01ESPC)
摘 要:Tetracycline-resistant bacteria(TRB) are of concern as emerging microbial contaminants in reclaimed water.To understand the effects of UV disinfection on TRB,both inactivation and reactivation profiles of TRB,as well as 16 tetracycline-resistant isolates from secondary effluent,were characterized in this study.The inactivation ratio of TRB was significantly lower(3.0-log) than that of heterotrophic bacteria(〉4.0-log) in the secondary effluent.Additionally,the proportion of TRB significantly increased from 1.65%to 15.51%under20 mJ/cm^2 ultraviolet(UV) exposure.The inactivation rates of tetracycline-resistant isolates ranged from 0.57/s to 1.04/s,of which tetracycline-resistant Enterobacter-1 was the most tolerant to UV light.The reactivation of TRB,tetracycline-resistant isolated strains,as well as heterotrophic bacteria commonly occurred in the secondary effluent even after20 mJ/cm^2 UV exposure.The colony forming ability of TRB and heterotrophic bacteria reached 3.2-log and 3.0-log under 20 mJ/cm^2 UV exposure after 22 hr incubation.The final inactivation ratio of tetracycline-resistant Enterobacter-1 was 1.18-log under 20 mJ/cm^2 UV exposure after 22 hr incubation,which is similar to those of TRB(1.18-log) and heterotrophic bacteria(1.19-log).The increased proportion of TRB and the reactivation of tetracycline-resistant enterobacteria in reclaimed water could induce a microbial health risk during wastewater reuse.Tetracycline-resistant bacteria(TRB) are of concern as emerging microbial contaminants in reclaimed water.To understand the effects of UV disinfection on TRB,both inactivation and reactivation profiles of TRB,as well as 16 tetracycline-resistant isolates from secondary effluent,were characterized in this study.The inactivation ratio of TRB was significantly lower(3.0-log) than that of heterotrophic bacteria(〉4.0-log) in the secondary effluent.Additionally,the proportion of TRB significantly increased from 1.65%to 15.51%under20 mJ/cm^2 ultraviolet(UV) exposure.The inactivation rates of tetracycline-resistant isolates ranged from 0.57/s to 1.04/s,of which tetracycline-resistant Enterobacter-1 was the most tolerant to UV light.The reactivation of TRB,tetracycline-resistant isolated strains,as well as heterotrophic bacteria commonly occurred in the secondary effluent even after20 mJ/cm^2 UV exposure.The colony forming ability of TRB and heterotrophic bacteria reached 3.2-log and 3.0-log under 20 mJ/cm^2 UV exposure after 22 hr incubation.The final inactivation ratio of tetracycline-resistant Enterobacter-1 was 1.18-log under 20 mJ/cm^2 UV exposure after 22 hr incubation,which is similar to those of TRB(1.18-log) and heterotrophic bacteria(1.19-log).The increased proportion of TRB and the reactivation of tetracycline-resistant enterobacteria in reclaimed water could induce a microbial health risk during wastewater reuse.
关 键 词:UV disinfection Tetracycline-resistant bacteria Inactivation Dark repair Reclaimed water
分 类 号:X703[环境科学与工程—环境工程] Q933[生物学—微生物学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...