Applications of balanced pairs  被引量:3

Applications of balanced pairs

在线阅读下载全文

作  者:LI HuanHuan WANG JunFu HUANG ZhaoYong 

机构地区:[1]Department of Mathematics, Nanjing University

出  处:《Science China Mathematics》2016年第5期861-874,共14页中国科学:数学(英文版)

基  金:supported by National Natural Science Foundation of China(Grant No.11171142)

摘  要:Let(X, Y) be a balanced pair in an abelian category. We first introduce the notion of cotorsion pairs relative to(X, Y), and then give some equivalent characterizations when a relative cotorsion pair is hereditary or perfect. We prove that if the X-resolution dimension of Y(resp. Y-coresolution dimension of X)is finite, then the bounded homotopy category of Y(resp. X) is contained in that of X(resp. Y). As a consequence, we get that the right X-singularity category coincides with the left Y-singularity category if the X-resolution dimension of Y and the Y-coresolution dimension of X are finite.Let(X, Y) be a balanced pair in an abelian category. We first introduce the notion of cotorsion pairs relative to(X, Y), and then give some equivalent characterizations when a relative cotorsion pair is hereditary or perfect. We prove that if the X-resolution dimension of Y(resp. Y-coresolution dimension of X)is finite, then the bounded homotopy category of Y(resp. X) is contained in that of X(resp. Y). As a consequence, we get that the right X-singularity category coincides with the left Y-singularity category if the X-resolution dimension of Y and the Y-coresolution dimension of X are finite.

关 键 词:balanced pairs relative cotorsion pairs relative derived categories relative singularity categories relative(co)resolution dimension 

分 类 号:O154.1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象