检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]Department of Mathematics, Shanghai Jiao Tong University [2]Department of Mathematics, Tongji University
出 处:《Science China Mathematics》2016年第5期935-944,共10页中国科学:数学(英文版)
基 金:supported by National Natural Science Foundation of China(Grant No.11171253)
摘 要:Let M be an n-dimensional complete Riemannian manifold with Ricci curvature n- 1. By developing some new techniques, Colding(1996) proved that the following three conditions are equivalent: 1)dGH(M, S^n) → 0; 2) the volume of M Vol(M) → Vol(S^n); 3) the radius of M rad(M) →π. By developing a different technique, Petersen(1999) gave the 4th equivalent condition, namely he proved that the n + 1-th eigenvalue of M, λ_(n+1)(M) → n, is also equivalent to the radius of M, rad(M) →π, and hence the other two.In this paper, we use Colding's techniques to give a new proof of Petersen's theorem. We expect our estimates will have further applications.Let M be an n-dimensional complete Riemannian manifold with Ricci curvature n- 1. By developing some new techniques, Colding(1996) proved that the following three conditions are equivalent: 1)dGH(M, S^n) → 0; 2) the volume of M Vol(M) → Vol(S^n); 3) the radius of M rad(M) →π. By developing a different technique, Petersen(1999) gave the 4th equivalent condition, namely he proved that the n + 1-th eigenvalue of M, λ_(n+1)(M) → n, is also equivalent to the radius of M, rad(M) →π, and hence the other two.In this paper, we use Colding's techniques to give a new proof of Petersen's theorem. We expect our estimates will have further applications.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145