检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:范德芹[1] 赵学胜[1] 朱文泉[2] 郑周涛[2]
机构地区:[1]中国矿业大学(北京)地球科学与测绘工程学院,北京100083 [2]北京师范大学资源学院,北京100875
出 处:《地理科学进展》2016年第3期304-319,共16页Progress in Geography
基 金:国家自然科学基金项目(41371389;41171306)~~
摘 要:基于植物物候的遥感监测对于研究植被对气候变化的响应具有重要的科学价值。本文在阐述植物物候遥感监测原理及其通用技术流程的基础上,分别从植被类型及其所处的地理条件、遥感数据源及其预处理、植物物候遥感识别方法和植物物候遥感监测结果评价4个方面分析了影响植物物候遥感监测精度的因素,并针对当前研究中存在的不足,探讨了提高植物物候遥感监测精度的可行性途径,即建立高分辨率的近地面遥感定点观测及数据共享网络,发展普适性更强的卫星遥感时序数据去噪及植被指数曲线重建方法,寻求稳定性更高的植物物候期遥感识别方法,探索综合运用地面观测、遥感监测与模型模拟实现物候观测空间尺度拓展的可能性。Monitoring plant phenology with remote sensing data has important scientific value for studying the response of vegetation to climate change. A comprehensive analysis on the influencing factors of accuracy of plant phenology estimation based on principles and general technical processes of remote sensing application in vegetation monitoring was carried out by taking into account the following four aspects: the specific vegetation type and its geographical conditions; remote sensing data and pre- processing; techniques used to identify plant phenometrics; and evaluation of satellite- derived plant phenometrics. Potential methods for improving the accuracy of plant phenology monitoring are thoroughly discussed. These include: building high-resolution nearsurface sensor- derived phenology observation and sharing network; developing universally applicable methods for noise removal of satellite remote sensing time- series data and reconstruction of vegetation index curves;searching more stable methods to estimate plant phenology; and exploring the possibility of synthesizing groundbased observation, remote sensing monitoring, and model simulation to achieve the spatial scaling- up of phenometrics.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.68.176