机构地区:[1]School of Mechatronics Engineering and Automation, Shanghai University, Shanghai 200444, China [2]School of Medicine, Shanghat Jiao Tong University, Shanghai 200025, China
出 处:《Journal of Wuhan University of Technology(Materials Science)》2016年第2期454-460,共7页武汉理工大学学报(材料科学英文版)
基 金:Funded by the National Natural Science Foundation of China(No.81201386);the China Postdoctoral Science Foundation(No.20100470110)
摘 要:In order to look for the best proportion of β-tricalcium phosphate(β-TCP)and poly(lactideco-glycolide)(PLGA)we fabricated porous composites β-TCP/PLGA scaffold using freeze-drying method.Morphologicalcharacterization using scanning electron microscopy showed that the interconnected pore distribution was even and there was no significant difference with the increase of PLGA content.Moreover,the porosity,compressive strength and degradation in vitro were characterized.The fabricated scaffolds with increased PLGA in the composites β-TCP/PLGA scaffolds willget stronger mechanicalproperty and better appearance,furthermore,get suitable environment for cells.According to the evaluation indexes for the tissue engineering scaffold,the group of scaffold(β-TCP/PLGA=6:4)was selected to evaluate the induced celladhesion and proliferative ability of the scaffolds.Then as transplant embed into the bone criticaldefect sites on rats femur.The repairing processes of bone defect sites were characterized by X-ray analysis within 12 weeks.X-ray analysis showed that the bone defect sites alldisplayed the formation of callus obviously,In summary,our data suggest that the scaffold(β-TCP/PLGA=6:4)has a promising clinicalfuture in regeneration of bone criticaldefects.In order to look for the best proportion of β-tricalcium phosphate(β-TCP)and poly(lactideco-glycolide)(PLGA)we fabricated porous composites β-TCP/PLGA scaffold using freeze-drying method.Morphologicalcharacterization using scanning electron microscopy showed that the interconnected pore distribution was even and there was no significant difference with the increase of PLGA content.Moreover,the porosity,compressive strength and degradation in vitro were characterized.The fabricated scaffolds with increased PLGA in the composites β-TCP/PLGA scaffolds willget stronger mechanicalproperty and better appearance,furthermore,get suitable environment for cells.According to the evaluation indexes for the tissue engineering scaffold,the group of scaffold(β-TCP/PLGA=6:4)was selected to evaluate the induced celladhesion and proliferative ability of the scaffolds.Then as transplant embed into the bone criticaldefect sites on rats femur.The repairing processes of bone defect sites were characterized by X-ray analysis within 12 weeks.X-ray analysis showed that the bone defect sites alldisplayed the formation of callus obviously,In summary,our data suggest that the scaffold(β-TCP/PLGA=6:4)has a promising clinicalfuture in regeneration of bone criticaldefects.
关 键 词:modifi cation scaffold freeze-drying transplant regeneration
分 类 号:R318.08[医药卫生—生物医学工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...